
https://uob-hpc.github.io

Performance Characterisation of
HPC Mini-apps on Arm SVE

Andrei Poenaru

University of Bristol



https://uob-hpc.github.io

Overview of HPC on Arm at Bristol
• Isambard is the world’s first production 64-bit Arm supercomputer

• ~160 nodes of 32-core TX2 in Cray XC50
• Phase 1 installed late 2017, full system late 2018

• One of the 3 universities part of the Catalyst UK project
• 64 nodes of 32-core TX2 in HPE Apollo 70
• Installed early 2019

• Published two performance studies, single-node [1] and at-scale [2]



https://uob-hpc.github.io

Towards SVE
• Upcoming generations of Arm HPC processors will use SVE

• Isambard 2 may include A64FX nodes
• Beginning work now enables a rolling start when hardware is available

• A multi-dimensional problem:
• Functional correctness – a lot of work already done
• Efficacy of using SVE – the level we can best address today
• Real performance projections – hardest to tackle, but most interesting



https://uob-hpc.github.io

Tools
• Static analysis:

• Compiler reports can help identify vectorisation issues
• Raw assembly code sometimes shows compiler’s decisions more clearly

• Dynamic analysis:
• ArmIE – fast enough to run most mini-apps under a reduced test case

• But still not fast enough for others, e.g. SNAP
• Custom instrumentation is useful to collect the relevant data
• Post-processing needed to aggregate and filter ArmIE output

• Can be expensive

• Simulation:
• gem5 (sve/beta1) – simulation speed is an issue



https://uob-hpc.github.io

Mini-apps
• Ideal for experiments where real hardware isn’t available

• Configurable problem sizes with fine-grained control
• Simple, well-understood kernels

• Easy to quantify vectorisation efficacy

• Many have built-in validation procedures

• STREAM, BUDE, TeaLeaf, CloverLeaf, Neutral, MiniFMM, MegaSweep
• Cover a wide range of scientific application classes
• The same used in TX2 papers
• MegaSweep used because SNAP is too slow



https://uob-hpc.github.io

Restrictions
• The mini-apps use a combination of MPI and OpenMP

• Disable MPI (or run with a single rank) and run a single thread

• Run times kept very low, so that we could potentially simulate the 
same inputs
• 1–5 seconds on a real TX2
• Number of iterations can further be reduced if needed

• Disable all profiling and validation
• Results validated separately



https://uob-hpc.github.io

Analysis (1)
1. How well is SVE targeted in compilers?

• We have access to three SVE compilers: Arm, Cray (alpha), GNU
• Plan to add Fujitsu soon
• Loosely similar performance, but there are differences

• Compare between compilers, but also between platforms (i.e. vs NEON 
and AVX)



https://uob-hpc.github.io

Analysis (2)

2. How much SVE is executed at run-time?
• Instrument the code to provide:

• A breakdown of SVE instructions executed, related to chosen SVE width – there is 
a danger that SVE code is generated but branched over

• Real occupancy of SVE vectors – SVE code is always predicated, so it is possible 
that “scalar” SVE instructions are being executed



https://uob-hpc.github.io

Analysis (3)

3. What (real) performance can we expect?
• Can only answer this using a simulator
• We are looking for correlations between data obtained from 

instrumentation and simulated performance
• This is still work in progress



https://uob-hpc.github.io

Results: Vectorisation
Application % time # Loops

Loops Vectorised SVE Loops Vectorised NEON Loops Vectorised AVX*

Arm Cray GCC Arm Cray GCC Intel Cray GCC

BUDE 98.6 4 4 3 3 3 4 3 4 4 3

TeaLeaf (cg) 87.2 8 5 6 8 5 6 8 8 6 6

TeaLeaf (ppcg) 91.2 6 6 6 6 6 6 6 6 6 6

CloverLeaf 62.5 10 9 10 6 8 9 6 10 9 8

MegaSweep 70.3 4 1 4 0 1 1 0 4 1 0

Neutral 85.8 2 0 0 0 0 0 0 0 0 0

MiniFMM 98 8 7 — 5 3 — 5 7 — 5

Total 42 32 29 28 26 26 28 39 26 28

Compiler versions used: Arm 19.2, Cray 9.0a, GCC 8.2

* No difference between AVX2 and AVX-512 
0% < 25 % 25–75% > 75% 100%



https://uob-hpc.github.io

Results: SVE Instruction Usage (1)
SVE



https://uob-hpc.github.io

Results: SVE Instruction Usage (2)
SVE



https://uob-hpc.github.io

Results: SVE Instruction Usage (3)
SVE



https://uob-hpc.github.io

• Most mini-apps get ideal vector utilisation (all lanes of SVE vectors 
are active for all operations):
• STREAM 
• BUDE
• TeaLeaf
• CloverLeaf
• MegaSweep

• Only Arm and Cray; no vectorisation with GCC

• But there are exceptions: MiniFMM

Results: SVE Vector Utilisation (1)



https://uob-hpc.github.io

Results: SVE Vector Utilisation (2)
Arm

 19.2
G

C
C

 8.2



https://uob-hpc.github.io

Results: SVE Memory Operations (1)

BUDE

MiniFMM

Arm 19.2, 512-bit SVE



https://uob-hpc.github.io

Results: SVE Memory Operations (2)

MegaSweep

CloverLeaf

Arm 19.2, 512-bit SVE



https://uob-hpc.github.io

Lessons Learned
• We were able to run binaries produced by Arm, Cray, and GCC, both 

from C and Fortran
• Obtaining a full set of results requires a sequence of several operations

• We’ve found using wrapper scripts for an additional level of abstraction helps 
both with collection and data organisation

• For single-core runs, aim for <10 s on a real TX2 core
• If writing custom instrumentation, consider processing as you go

• Overhead of a clean call can justify doing extra work in the instrumentation 
client to avoid the need to post-process

• Thread safety in DynamoRIO is not trivial



https://uob-hpc.github.io

Challenges: Analysis Tools
• ArmIE performance is good for plain emulation, but adding 

instrumentation can quickly slow it down significantly
• Memory tracing produces huge output files

• Can easily reach several GBs for a second of real TX2 run-time
• MegaSweep and SNAP are very challenging here

• Several output files produced by default, which need to be merged
• Post-processing the output is an expensive task in itself

• We’ve encountered some hard-to-reproduce segmentation faults with 
custom instrumentation
• DynamoRIO documentation leaves to be desired
• Working with Arm to resolve the issue



https://uob-hpc.github.io

Challenges: Compilers
• Yes, we can target SVE in compilers

• But how optimal is this generated code for a real processor?

• We know (or can sensibly guess) micro-architectural details for 
upcoming SVE processors
• But there’s no way to pass them to the compilers

• For micro-architecture experiments, we would want a way to 
describe a hypothetical processor to the compiler
• The same configuration can then be simulated



https://uob-hpc.github.io

Further Work
• Further refining of emulation-based experiments

• Working on applying regions of interest to all clients, so that we don’t 
record data in initialisation and clean-up

• Trying to identify and fix the cause of intermittent segfaults

• We are building SimEng (“Simulation Engine”), a flexible and 
accurate simulation toolkit designed specifically with HPC 
processors in mind
• SVE micro-architecture design-space exploration is our first goal



https://uob-hpc.github.io

Questions



https://uob-hpc.github.io

[1] Comparative Benchmarking of the First Generation of HPC-Optimised 
Arm Processors on Isambard
S. McIntosh-Smith, J. Price, T. Deakin and A. Poenaru, CUG 2018, Stockholm

[2] Scaling Results From the First Generation of Arm-based Supercomputers 
S. McIntosh-Smith, J. Price, A. Poenaru and T. Deakin, CUG 2019, Montreal


