Andrei Poenaru

University of Bristol

Performance Characterisation of
HPC Mini-apps on Arm SVE

k¢ University of
X

https://uob-hpc.github.io . BRISTOL

Overview of HPC on Arm at Bristol

e |[sambard is the world’s first production 64-bit Arm supercomputer
* ~160 nodes of 32-core TX2 in Cray XC50
* Phase 1 installed late 2017, full system late 2018

* One of the 3 universities part of the Catalyst UK project
* 64 nodes of 32-core TX2 in HPE Apollo 70
* Installed early 2019

* Published two performance studies, single-node [1] and at-scale [2]

% University of
https://uob-hpc.github.io BRISTOL

Towards SVE

 Upcoming generations of Arm HPC processors will use SVE
* Isambard 2 may include A64FX nodes

* Beginning work now enables a rolling start when hardware is available

* A multi-dimensional problem:
* Functional correctness — a lot of work already done
 Efficacy of using SVE — the level we can best address today
e Real performance projections — hardest to tackle, but most interesting

Elic University of
BRISTOL

https://uob-hpc.github.io

Tools

e Static analysis:

 Compiler reports can help identify vectorisation issues

 Raw assembly code sometimes shows compiler’s decisions more clearly
* Dynamic analysis:

* ArmlE — fast enough to run most mini-apps under a reduced test case
* But still not fast enough for others, e.g. SNAP

e Custom instrumentation is useful to collect the relevant data

* Post-processing needed to aggregate and filter ArmIE output
e Can be expensive

e Simulation:
 gemb5 (sve/betal) — simulation speed is an issue

https://uob-hpc.github.io

Elic University of
BRISTOL

Mini-apps

* |deal for experiments where real hardware isn’t available

* Configurable problem sizes with fine-grained control
* Simple, well-understood kernels

* Easy to quantify vectorisation efficacy

 Many have built-in validation procedures

« STREAM, BUDE, TealLeaf, CloverLeaf, Neutral, MiniFMM, MegaSweep
* Cover a wide range of scientific application classes
 The same used in TX2 papers

 MegaSweep used because SNAP is too slow

Elic University of
BRISTOL

https://uob-hpc.github.io

Restrictions

* The mini-apps use a combination of MPI and OpenMP
* Disable MPI (or run with a single rank) and run a single thread

* Run times kept very low, so that we could potentially simulate the
same inputs

e 1-5 seconds on a real TX2
e Number of iterations can further be reduced if needed

* Disable all profiling and validation
* Results validated separately

Elic University of
BRISTOL

https://uob-hpc.github.io

Analysis (1)

1. How well is SVE targeted in compilers?
 We have access to three SVE compilers: Arm, Cray (alpha), GNU

 Plan to add Fujitsu soon
 Loosely similar performance, but there are differences

e Compare between compilers, but also between platforms (i.e. vs NEON
and AVX)

Elic University of
BRISTOL

https://uob-hpc.github.io

Analysis (2)

2. How much SVE is executed at run-time?

* |nstrument the code to provide:

A breakdown of SVE instructions executed, related to chosen SVE width — there is
a danger that SVE code is generated but branched over

Real occupancy of SVE vectors — SVE code is always predicated, so it is possible
that “scalar” SVE instructions are being executed

https://uob-hpc.github.io

Elic University of
BRISTOL

Analysis (3)

3. What (real) performance can we expect?

 Can only answer this using a simulator

 We are looking for correlations between data obtained from
instrumentation and simulated performance
 Thisis still work in progress

Elic University of
BRISTOL

https://uob-hpc.github.io

Results: Vectorisation

0
e T e o | e | Lo] s
8

Tealeaf(cg) 872 5 ¢ BN 5 ¢ NENEEN s 5

TeaLeaf (ppcg) 91.2 6 ---------
CloverLeaf 62.5 0o [o N ¢ & 9 s PN o | 8
megasweep 703 4 [T IO T T OO
Neutral 85.8 llllllllllllllnll
MiniFMM - -

-mnmnnmmnmm
Compiler versions used: Arm 19.2, Cray 9.0a, GCC 8.2

-% University of
https://uob-hpc.github.io . BRISTOL

* No difference between AVX2 and AVX-512

Dynamic execution count (instructions)

Op Group

Results: SVE Instruction Usage (1) — [arithmetic

bude-sve
svewidth
18,000,000,000
NEON 128 256 512 1024

550,000,000 16,000,000,000

500,000,000 - Tg‘
6 14,000,000,000

450,000,000 - 'g
400,000,000 - ® 12,000,000,000

L
350,000,000 § 10,000,000,000

300,000,000 - :
2 8,000,000,000

250,000,000 5

Q
200,000,000 3 6,000,000,000

0

150,000,000 =
& 4,000,000,000

100,000,000 o”
50,000,000 2,000,000,000
0 0

0 2 0 ga 0 qa 'L 0 ga 'L 0 Q'o ’L
@"9 Go% «“"9 Geg ‘«"% ol gc,c?’ @\%&9 ggc% «(\\9 9 gc,c?’

NEON

& g°°

I A64
I control
neutral-sve SVE " mem-read
svewidth | mem-write
move
128 256 512 1024 " other

A

R g°° & g°° & g°° <°g
E’Vé University of

https://uob-hpc.github.io BRISTOL

Results: SVE Instruction Usage (2)

Op Group

I A64

— | arithmetic
I control
" mem-read
~ mem-write

SVE—

tealeaf-sve clover_leaf-sve move
svewidth svewidth — D other
NEON 128 256 512 1024 NEON 128 256 512 1024

2,000,000 3,500,000,000

1,800,000
- __3,000,000,000
(2] [}
| 1,600,000 |
g 1.400.000 g 2,500,000,000
@ @
£ £
= 1,200,000 -
E £ 2,000,000,000
o o
© 1,000,000 o
c c
2 2 1,500,000,000
§ 800,000 § R
x x
Q (]
© 600,000 -2 1,000,000,000
£ £
© ©
E, 400,000 g,

500,000,000
200,000
0 Q@ ol 0 2 ol 0 0 ey 0 Q@ ol 'L o ot 'L o 'L 'L 'a 'L 'L o ’L
S AV o o 0 o S Qb o o0 SRR
< c,o% <<<‘ oy goo «(\\ Ge RS («\\ Go% «(\\ DA W oo% & Goe a&\ 000 gc,c. «(\\ LR

https://uob-hpc.github.io

EIIQ University of
i BRISTOL

Dynamic execution count (instructions)

Results: SVE Instruction Usage (3)

10,000,000,000

9,000,000,000

8,000,000,000

7,000,000,000

6,000,000,000

5,000,000,000

4,000,000,000

3,000,000,000

2,000,000,000

1,000,000,000

a““

mega-sweep3d-sve
svewidth

NEON 128

r\QQ‘gQa %’L

'\97‘

2
r\‘b
ooe

R °°?’1

2
c}'g’ R

NEON

24,000,000,000
1024
22,000,000,000
20,000,000,000
18,000,000,000
16,000,000,000
14,000,000,000
12,000,000,000
10,000,000,000
8,000,000,000

6,000,000,000

Dynamic execution count (instructions)

4,000,000,000

2,000,000,000

o

'L >
Q. 0
7

https://uob-hpc.github.io

128

minifmm-sve
svewidth

256

512

Op Group

I A64
— | arithmetic
I control
" mem-read
~ mem-write
move
— other

SVE—

1024

o o7 o9 %'7* o9 %'7* o9 %'7* o
0“((\’\ QOG ((\’\ QOG ((\’\ QOG ((\’\ QOG ((\’\ QOG

ware Jniversity of

{ BRISTOL

Results: SVE Vector Utilisation (1)

* Most mini-apps get ideal vector utilisation (all lanes of SVE vectors
are active for all operations):

e STREAM

e BUDE

* Tealeaf

* CloverLeaf
* MegaSweep

* Only Arm and Cray; no vectorisation with GCC

* But there are exceptions: MiniFMM

Elic University of
BRISTOL

https://uob-hpc.github.io

tion (2)

fmm.omp-sve

1ISa

SVE Vector Util

Results

svewidth = 1024

=512

svewidth

svewidth =

svewidth = 128

o
o
-

Arm 19.2

8 8 ¥ & °

suoneltado Jo abejusalad

o
o
-

GCC 8.2

8 8 @ & °

suonelado Jo abejusolad

2oL
€201-968
§68-89/
19/-0%9
6€9-CLS
L1G-¥8€
£€8€-99¢
§G¢-8¢l
1210

Active bits

2oL
€201-968
§68-89/
197-0%9
6€9-CLS
L1G-¥8€
£8€-99¢
§5¢-8¢l
1210

Active bits

oL
€201-968
§68-89/
197-0%9
6€9-CLS
L1G-¥8€
£8€-99¢
§5¢-8¢l
1210

Active bits

2oL
€¢01-968
§68-89/
197-0¥9
6€9-CLS
L1G-¥8€
£8€-99¢
§G¢-8¢l
FXASY

Active bits

y of

BRISTOL

&

% Unaiversit

https://uob-hpc.github.io

Results: SVE Memory Operations (1)

BUDE

MiniFMM

all-lanes
Sve contiguous
loads |
total] i
non-sve
1] contiguous all-lanes D
o stores sve D
o — non-sve
] non-sve
— D all-lanes
loads
o] [lsome-lanes
sve D contiguous
] B [lgather []some-lanes
- SHorEs e —contiguous
o — all-lanes

Arm 19.2, 512-bit SVE

D non-sve

https://uob-hpc.github.io

— some-lanes

Bl University of
BRISTOL

Results: SVE Memory Operations (2)

MegaSweep

CloverLeaf

Arm 19.2, 512-bit SVE

non-sve
loads
total
— — sve —contiguous all-lanes—
S ==sve == contiguous all-lanes ==
stores non-sve
non-sve
total loads _
contiguous all-lanes
sve
——gather — some-lanes
— some-lanes
= all-lanes
[Isve S r
Searte — some-lanes
stores } [Jcontiguous
I:I [Cnon-sve — some-lanes
all-lanes[]

https://uob-hpc.github.io

B

University of

Bl BRISTOL

Lessons Learned

 We were able to run binaries produced by Arm, Cray, and GCC, both
from C and Fortran

* Obtaining a full set of results requires a sequence of several operations

* We've found using wrapper scripts for an additional level of abstraction helps
both with collection and data organisation

* For single-core runs, aim for <10 s on a real TX2 core

* |f writing custom instrumentation, consider processing as you go

* Overhead of a clean call can justify doing extra work in the instrumentation
client to avoid the need to post-process

* Thread safety in DynamoRIO is not trivial

% University of
https://uob-hpc.github.io BRISTOL

Challenges: Analysis Tools

ArmlE performance is good for plain emulation, but adding
instrumentation can quickly slow it down significantly

Memory tracing produces huge output files

* Can easily reach several GBs for a second of real TX2 run-time
* MegaSweep and SNAP are very challenging here

e Several output files produced by default, which need to be merged

* Post-processing the output is an expensive task in itself
We’ve encountered some hard-to-reproduce segmentation faults with
custom instrumentation

* DynamoRIO documentation leaves to be desired

* Working with Arm to resolve the issue

% University of
https://uob-hpc.github.io BRISTOL

Challenges: Compilers

* Yes, we can target SVE in compilers
 But how optimal is this generated code for a real processor?

* We know (or can sensibly guess) micro-architectural details for
upcoming SVE processors

e But there’s no way to pass them to the compilers

* For micro-architecture experiments, we would want a way to
describe a hypothetical processor to the compiler

* The same configuration can then be simulated

https://uob-hpc.github.io

Elic University of
BRISTOL

Further Work

* Further refining of emulation-based experiments

* Working on applying regions of interest to all clients, so that we don’t
record data in initialisation and clean-up

* Trying to identify and fix the cause of intermittent segfaults

* We are building SimEng (“Simulation Engine”), a flexible and
accurate simulation toolkit designed specifically with HPC
processors in mind

e SVE micro-architecture design-space exploration is our first goal

% University of
https://uob-hpc.github.io BRISTOL

Questions

A University of
X

https://uob-hpc.github.io . BRISTOL

[1] Comparative Benchmarking of the First Generation of HPC-Optimised

Arm Processors on Isambard
S. MciIntosh-Smith, J. Price, T. Deakin and A. Poenaru, CUG 2018, Stockholm

[2] Scaling Results From the First Generation of Arm-based Supercomputers
S. MciIntosh-Smith, J. Price, A. Poenaru and T. Deakin, CUG 2019, Montreal

Bl BRISTOL

https://uob-hpc.github.io

Elic University of
&

