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Overview of HPC on Arm at Bristol

e |[sambard is the world’s first production 64-bit Arm supercomputer
* ~160 nodes of 32-core TX2 in Cray XC50
* Phase 1 installed late 2017, full system late 2018

* One of the 3 universities part of the Catalyst UK project
* 64 nodes of 32-core TX2 in HPE Apollo 70
* Installed early 2019

* Published two performance studies, single-node [1] and at-scale [2]
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Towards SVE

 Upcoming generations of Arm HPC processors will use SVE
* Isambard 2 may include A64FX nodes

* Beginning work now enables a rolling start when hardware is available

* A multi-dimensional problem:
* Functional correctness — a lot of work already done
 Efficacy of using SVE — the level we can best address today
e Real performance projections — hardest to tackle, but most interesting
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Tools

e Static analysis:

 Compiler reports can help identify vectorisation issues

 Raw assembly code sometimes shows compiler’s decisions more clearly
* Dynamic analysis:

* ArmlE — fast enough to run most mini-apps under a reduced test case
* But still not fast enough for others, e.g. SNAP

e Custom instrumentation is useful to collect the relevant data

* Post-processing needed to aggregate and filter ArmIE output
e Can be expensive

e Simulation:
 gemb5 (sve/betal) — simulation speed is an issue
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Mini-apps

* |deal for experiments where real hardware isn’t available

* Configurable problem sizes with fine-grained control
* Simple, well-understood kernels

* Easy to quantify vectorisation efficacy

 Many have built-in validation procedures

« STREAM, BUDE, TealLeaf, CloverLeaf, Neutral, MiniFMM, MegaSweep
* Cover a wide range of scientific application classes
 The same used in TX2 papers

 MegaSweep used because SNAP is too slow
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Restrictions

* The mini-apps use a combination of MPI and OpenMP
* Disable MPI (or run with a single rank) and run a single thread

* Run times kept very low, so that we could potentially simulate the
same inputs

e 1-5 seconds on a real TX2
e Number of iterations can further be reduced if needed

* Disable all profiling and validation
* Results validated separately
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Analysis (1)

1. How well is SVE targeted in compilers?
 We have access to three SVE compilers: Arm, Cray (alpha), GNU

 Plan to add Fujitsu soon
 Loosely similar performance, but there are differences

e Compare between compilers, but also between platforms (i.e. vs NEON
and AVX)
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Analysis (2)

2. How much SVE is executed at run-time?

* |nstrument the code to provide:

A breakdown of SVE instructions executed, related to chosen SVE width — there is
a danger that SVE code is generated but branched over

Real occupancy of SVE vectors — SVE code is always predicated, so it is possible
that “scalar” SVE instructions are being executed

https://uob-hpc.github.io
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Analysis (3)

3. What (real) performance can we expect?

 Can only answer this using a simulator

 We are looking for correlations between data obtained from
instrumentation and simulated performance
 Thisis still work in progress
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Results: Vectorisation
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Dynamic execution count (instructions)

Op Group

Results: SVE Instruction Usage (1) — [ arithmetic
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Results: SVE Instruction Usage (2)

Op Group
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Dynamic execution count (instructions)

Results: SVE Instruction Usage (3)
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Results: SVE Vector Utilisation (1)

* Most mini-apps get ideal vector utilisation (all lanes of SVE vectors
are active for all operations):

e STREAM

e BUDE

* Tealeaf

* CloverLeaf
* MegaSweep

* Only Arm and Cray; no vectorisation with GCC

* But there are exceptions: MiniFMM
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Results: SVE Memory Operations (1)
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Results: SVE Memory Operations (2)
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Lessons Learned

 We were able to run binaries produced by Arm, Cray, and GCC, both
from C and Fortran

* Obtaining a full set of results requires a sequence of several operations

* We've found using wrapper scripts for an additional level of abstraction helps
both with collection and data organisation

* For single-core runs, aim for <10 s on a real TX2 core

* |f writing custom instrumentation, consider processing as you go

* Overhead of a clean call can justify doing extra work in the instrumentation
client to avoid the need to post-process

* Thread safety in DynamoRIO is not trivial

% University of
https://uob-hpc.github.io BRISTOL



Challenges: Analysis Tools

ArmlE performance is good for plain emulation, but adding
instrumentation can quickly slow it down significantly

Memory tracing produces huge output files

* Can easily reach several GBs for a second of real TX2 run-time
* MegaSweep and SNAP are very challenging here

e Several output files produced by default, which need to be merged

* Post-processing the output is an expensive task in itself
We’ve encountered some hard-to-reproduce segmentation faults with
custom instrumentation

* DynamoRIO documentation leaves to be desired

* Working with Arm to resolve the issue
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Challenges: Compilers

* Yes, we can target SVE in compilers
 But how optimal is this generated code for a real processor?

* We know (or can sensibly guess) micro-architectural details for
upcoming SVE processors

e But there’s no way to pass them to the compilers

* For micro-architecture experiments, we would want a way to
describe a hypothetical processor to the compiler

* The same configuration can then be simulated
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Further Work

* Further refining of emulation-based experiments

* Working on applying regions of interest to all clients, so that we don’t
record data in initialisation and clean-up

* Trying to identify and fix the cause of intermittent segfaults

* We are building SimEng (“Simulation Engine”), a flexible and
accurate simulation toolkit designed specifically with HPC
processors in mind

e SVE micro-architecture design-space exploration is our first goal
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Questions
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