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Recent processor trends in HPC

Many-core CPUs
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Emerging architectures

Google’s Tensorflow Processing Unit (TPU), GraphCore, Intel’'s Nervana
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GRAFHCORE |PU pair — 600MB @ 90TB/s

“Colossus” IPU pair
(300W PCle card) 2432 processor tiles >200Tflop,¢ 3, ~600MB

card-to-card ) =) card-to-card

links - - links

host I/O - - host I/O

PCle-4 -) - PCle-4
card-to-card - )

card-to-card

links - =) links

all-to-all exchange spines each ~8TBps
@ ScaledML 2018 link + host bandwidth 384GBps/chip
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Recent CPU trends

e CPUs have evolved to include lots of cores and wide vector units
e 32 core CPUs now common (AMD Naples, Marvell ThunderX2)

e 48, 64 core CPUs arrive within the next 12 months (A64fx, Rome)

* This renewed competition in CPUs is crucial to the health of the HPC
ecosystem, and for performance per dollar

* What about competition in GPUs? Intel and AMD...?

cAKC University of
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AMD’s Rome showing where mainstream CPUs are heading

From late 2019:
* Up to 64 heavyweight x86 cores per CPU
* Uses 8 chiplets of 8 cores each, plus an I/O chiplet

MONOLITHIC VS. MULTICHIP

MOVING TO A MULTI-DIE APPROACH HAS MANY BENEFITS

Chiplets likely to be an important future trend...

cAKC University of
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Emerging competition from Arm CPU vendors A
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A bit of history on Performance Portability in Bristol
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What do | mean by “performance portability?”

“A code is performance portable if it can achieve a similar fraction
of peak hardware performance on a range of different target
architectures.”

Questions:

* Does it have to be a “good” fraction? YES! Within 20% of “best
achievable”, i.e. of hand-optimized OpenMP, CUDA, ...

* How wide is the range of target architectures? Depends on your
goal, but important to allow for future architectural developments

4K University of
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High performance in silico virtual drug © The Author(s) 2014

Reprints and permissions:
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Abstract

Drug screening is an important part of the drug development pipeline for the pharmaceutical industry. Traditional, lab-
based methods are increasingly being augmented with computational methods, ranging from simple molecular similarity
searches through more complex pharmacophore matching to more computationally intensive approaches, such as mole-
cular docking. The latter simulates the binding of drug molecules to their targets, typically protein molecules. In this
work, we describe BUDE, the Bristol University Docking Engine, which has been ported to the OpenCL industry stan-
dard parallel programming language in order to exploit the performance of modern many-core processors. Our highly
optimized OpenCL implementation of BUDE sustains .43 TFLOP/s on a single Nvidia GTX 680 GPU, or 46% of peak
performance. BUDE also exploits OpenCL to deliver effective performance portability across a broad spectrum of differ-
ent computer architectures from different vendors, including GPUs from Nvidia and AMD, Intel’s Xeon Phi and muilti-
core CPUs with SIMD instruction sets.

Keywords
Molecular docking, in silico virtual drug screening, many-core, GPU, OpenCL, performance portability
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Bristol’s first performance portable project:

The BUDE molecular docking code
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"High Performance in silico Virtual Drug Screening on Many-Core Processors",
S. MclIntosh-Smith, J. Price, R.B. Sessions, A.A. Ibarra, IJHPCA 2014
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What about bandwidth bound codes?

 We developed “BabelStream” to measure the achievable fraction
of peak memory bandwidth (formerly known as “GPU-STREAM”)

* Cross platform
* CPUs, GPUs, ...

* Cross language
e C/C++, OpenMP inc. target, CUDA, OpenACC, Kokkos, SYCL, ...

* http://uob-hpc.github.io/BabelStream/

Deakin, T., Price, J., Martineau, M., & McIntosh-Smith, S. Evaluating attainable memory bandwidth of parallel
programming models via BabelStream. International Journal of Computational Science and Engineering, April 2017.
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Int. J. Computational Science and Engineering, Vol. 17, No. 3, 2018 247

Evaluating attainable memory bandwidth of parallel
programming models via BabelStream

Tom Deakin*, James Price, Matt Martineau and
Simon Mclntosh-Smith

Department of Computer Science,
University of Bristol,

Bristol, UK

Email: tom.deakin@bristol.ac.uk
Email: J.Price@bristol.ac.uk
Email: m.martineau@bristol.ac.uk
Email: cssnmis@bristol.ac.uk
*Corresponding author

Abstract: Many scientific codes consist of memory bandwidth bound kemnels. One major
advantage of many-core devices such as general purpose graphics processing units (GPGPUs)
and the Intel Xeon Phi is their focus on providing increased memory bandwidth over traditional
CPU architectures. Peak memory bandwidth is usually unachievable in practice and so
benchmarks are required to measure a practical upper bound on expected performance. We
augment the standard STREAM kernels with a dot product kernel to investigate the performance
of simple reduction operations on large arrays. The choice of programming model should ideally
not limit the achievable performance on a device. BabelStream (formally GPU-STREAM) has
been updated to incorporate a wide variety of the latest parallel programming models, all
implementing the same parallel scheme. As such this tool can be used as a kind of Rosetta Stone
which provides both a cross-platform and cross-programming model array of results of
achievable memory bandwidth.

Keywords: performance portability; many-core; parallel programming models; memory
bandwidth benchmark.
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On the Performance Portability
of Structured Grid Codes
on Many-Core Computer Architectures

Simon McIntosh-Smith, Michael Boulton, Dan Curran, and James Price

Department of Computer Science, University of Bristol,
Woodland Road, Clifton, Bristol, BS8 1UB, UK
http://www.cs.bris.ac.uk/home/simonm/

Abstract. With the advent of many-core computer architectures such
as GPGPUs from NVIDIA and AMD, and more recently Intel’s Xeon
Phi, ensuring performance portability of HPC codes is potentially
becoming more complex. In this work we have focused on one impor-
tant application area — structured grid codes — and investigated tech-
niques for ensuring performance portability across a diverse range of
different, high-end many-core architectures. We chose three codes to in-
vestigate: a 3D lattice Boltzmann code (D3Q19 BGK), the CloverLeaf
hydrodynamics mini application from Sandia’s Mantevo benchmark suite,
and ROTORSIM, a production-quality structured grid, multiblock, com-
pressible finite-volume CFD code. We have developed OpenCL versions
of these codes in order to provide cross-platform functional portability,
and compared the performance of the OpenCL versions of these struc-
tured grid codes to optimized versions on each platform, including hybrid
OpenMP/MPI/AVX versions on CPUs and Xeon Phi, and CUDA ver-
sions on NVIDIA GPUs. Our results show that, contrary to conventional
wisdom, using OpenCL it is possible to achieve a high degree of perfor-
mance portability, at least for structured grid applications, using a set of
straightforward techniques. The performance portable code in OpenCL
is also highly competitive with the best performance using the native
parallel programming models on each platform.
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After BabelStream, more realistic bandwidth bound codes
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Fig. 1: D3Q19-BGK performance. Figure 1a shows MLUPS on the vertical axis, while Figure 1b
shows the fraction of peak memory bandwidth sustained during the benchmark runs (higher
is better in both graphs).

-% Unlver51t Of S.N. McIntosh-Smith, M. Boulton, D. Curran, & J.R. Price, “On the
g performance portability of structured grid codes on many-core computer 4‘
BRISTOL architectures”, ISC, Leipzig, June 2014. DOI: 10.1007/978-3-319-07518-1_4



After BabelStream, more realistic bandwidth bound codes
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Fig. 2: ROTORSIM performance. Figure 2a shows performance in cycles per second. Figure 2b
shows the sustained fraction of memory bandwidth on each device (top), and performance

relative to each device’s peak double precision floating point capability (bottom).

Elic University of
BRISTOL

S.N. MclIntosh-Smith, M. Boulton, D. Curran, & J.R. Price, “On the
performance portability of structured grid codes on many-core computer

architectures”, ISC, Leipzig, June 2014. DOI: 10.1007/978-3-319-07518-1_4
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After BabelStream, more realistic bandwidth bound codes
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Fig. 3: CloverLeaf performance. Figure 3a shows performance in iterations per second. Figure 3b
shows the sustained fraction of peak memory bandwidth (top), and performance relative to
peak double precision floating point (bottom).
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More complex bandwidth bound codes

Tealeaf heat conduction mini-app from the
Mantevo suite of benchmarks

* Implicit, sparse, matrix-free solvers, structured grid
e Conjugate Gradient (CG)
* Chebyshev
* Preconditioned Polynomial CG (PPCG)

* Memory bandwidth bound
* Good strong and weak scaling on Titan & Piz Daint

Mclntosh-Smith, S., Martineau, M., et al. TeaLeaf: a mini-application to enable design-
space explorations for iterative sparse linear solvers. WRAp workshop, IEEE Cluster
2017, Honolulu, USA.
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Tealeaf Performance Portability on GPUs

GPU - NVIDIA Tesla K20X

CUDA OpenCL OpenACC Kokkos Kokkos OpenMP Kokkos RAJA RAJA
Functors Lambdas 4.0 Nested Box List

ENN CG EXB Cheby BN PPCG

For TealLeaf, all of the programming models got to within
25% of the performance of hand-optimised OpenCL / CUDA

Martineau, M., Mclntosh-Smith, S. Gaudin, W., Assessing the Performance Portability
of Modern Parallel Programming Models using Tealeaf, 2016, CC-PE
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Performance Portability: the next phase
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S. J. Pennycook, J. D. Sewall and V. W. Lee
Intel Corporation
Santa Clara, California
{john .pennycookjason.sewall,Victor.w lee} @intel.com

Abstract—The term “performance portability”” has been infor-
mally used in computing to refer to a variety of notions which
generally include: 1) the ability to run one application across
multiple hardware platforms; and 2) achieving some notional
level of performance on these platforms. However, there has
been a noticeable lack of consensus on the precise meaning
of the term, and authors’ conclusions regarding their success
(or failure) to achieve performance portability have thus been
subjective. Comparing one approach to performance portability
with another has generally been marked with vague claims and
verbose, qualitative explanation of the comparison. This paper
presents a concise definition for performance portability, along
with a simple metric that accurately captures the performance
and portability of an application across different platforms. The
utility of this metric is then demonstrated with a retroactive
application to previous work.

and demonstrate its accuracy and utility for quantifying
an application’s performance and portability; and

3) We retroactively apply our metric to a number of pub-
lished application studies, thereby highlighting the utility
of a shared metric when comparing and contrasting
different approaches to performance portability.

II. RELATED WORK

There have been a number of efforts to develop new program-
ming models, languages and tools that provide users with a
productive means of achieving performance portability. Some
have proposed the use of domain-specific languages (DSLs),
providing a limited set of high-level abstractions for a spe-

http://uob-hpc.github.io



A more rigorous metric for Performance Portability

For a given set of platforms H, the performance portability P of an
application a solving problem p is:

( H|

1
(P(aupaH) — < ZiGH 67'(@ p)

0 otherwise

if ¢ 1s supported Vi € H

\

Where e(a,p) is the performance efficiency of application a solving
problem p on platform i.
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Two ways to measure Performance Portability

Definitions from the Pennycook, Sewall and Lee paper:

1. Architectural efficiency:
Achieved performance as a fraction of peak theoretical hardware

performance. This represents the ability of an application to utilize
hardware efficiently;

2. Application efficiency:
Achieved performance as a fraction of best observed performance.

This represents the ability of an application to use the most
appropriate implementation and algorithm for each platform

cAKC University of
B%egsTu‘gL http://uob-hpc.github.io GW4‘



A systematic evaluation of Performance Portability

e Studying Performance Portability is hard!

* Have to be rigorous about doing as well as possible across a wide range issues:
architectures, programming languages, algorithms, compilers, ...

|t takes a lot of effort to do this well
* Motivated by our results so far, in Bristol we have initiated a wide-
ranging evaluation of Performance Portability:
e Across many codes
* Across many programming languages
e Across many architectures

* QOur goal is to share these codes and results to further the fundamental
understanding of performance portability

4K University of
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Codes in the Bristol Performance Portability study

BabelStream:
CloverLeaf:
Tealeaf:
Neutral:
MiniFMM:
SNAP*:
unSNAP*:
Mini-HYDRA:

Mini-PRECISE:

Elic University of
BRISTOL

simple measure of achievable memory bandwidth
structured grid hydrodynamics

structured grid heat diffusion

Monte Carlo neutral particle transport

fast multipole method

structured grid deterministic neutral particle transport
unstructured grid deterministic neutral particle transport
unstructured grid CFD (name TBC)

combustion code

* = work in progress ;
http://uob-hpc.github.io GW



Parallel programming languages in the Bristol PP study

* OpenMP e CUDA

* OpenMP target * OpenCL

e Kokkos CPU  RAJA*

* Kokkos GPU e SYCL*

* OpenACC * Flat MPI*
* =to come

4K University of
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Target hardware platforms

CPUs:

=%

Intel Skylake

Intel KNL

AMD Naples, Rome*
IBM POWER9

Marvell ThunderX2
Marvell ThunderX3/4/5*
Ampere eMAG

Fujitsu Ab4fx*

University of

Bl BRISTOL

http://uob-hpc.github.io

Accelerators:

NEC Aurora
NVIDIA Turing
NVIDIA Volta
NVIDIA Pascal
AMD Radeon VI
FPGASs*™

* = to come
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Architecture Clocks Speed Peak DP Peak SP Peak BW
(GHz) FLOP/s FLOP/s (GB/S)

Skylake
KNL

Power 9
Naples
ThunderX2
Ampere

NEC Aurora
K20

P100

V100

Turing
Radeon VII

Elic University of
BRISTOL

P P N NN RPN

64
20
32
32
32

8

1.3
3.2
2.0
2.5
3.3

1.4
0.71
1.13
1.37

1.35
1.40

http://uob-hpc.github.io

3.76
2.66
1.02
1.02
1.28
0.21

2.15
1.18
4.04
7.01

0.37
3.50

7.53
5.32
2.05
2.05
2.56
0.42

4.30
3.52
8.07
14.03

11.75
13.80

490
340
288
288
159
1,200
208
732
900

616
1,000
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Peak D.P.
FLOP/s
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Quantifying performance: CPU memory bandwidth
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Quantifying performance: GPU memory bandwidth
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Quantifying performance: CPU memory latency
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Bristol Performance Portability study

Latest results
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BabelStream

Achieved bandwidth (GB/s)

Higher is better

Skylake
KNL

Power 9
Naples
ThunderX?2
Ampere
NEC Aurorat 976 - - - - -
P100F 553 557 552 552 551

V100 774 828 833 829 839
Turing} 528 554 556 555 554

Radeon VII} - - - - 814
OpenMP Kokkos CUDA OpenACC OpenCL

Elic University of
BRISTOL

Skylake
KNL}
Power 9}
Naples
ThunderX2}
Ampere
NEC Aurorat
K20}

P100¢}
V100t
Turing ¢
Radeon VII}

http://uob-hpc.github.io

Architectural efficiency

(Fraction of hardware peak)

| __ Higher is better
80.2% | 68.1% - 324% | 418% |
922% | 62.1% - 90.7% | 58.4% -
72.8% | 73.6% - 72.5% -
83.4% | 66.2% - 89.3% -
85.3% | 84.7% - - -
66.4% | 57.3% - - -
81.3% - - - -
692% | 729% | 72.3% - 72.8% A
75.5% | 76.1% | 754% = 753% | 75.3% |
86.0% | 92.0% | 92.6% | 92.1% | 93.2% -
85.7% | 90.0% | 90.2% | 90.1% | 89.9% -

- - - - 79.4%

OpeﬁMP Kokkos

CUDA OpenACC OpenCL
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Observations on BabelStream Performance Portability

* Today, no language runs successfully on all our platforms

* |If we exclude the AMD Radeon GPU, then OpenMP successfully runs on all the

remaining platforms, with PP =79.1% (|H|, the number of platforms included
in the metric, is 11)

* Excluding the NEC Aurora, then Kokkos can run across the remaining set with
PP=72.7% (|H|=10)

* If we further exclude all the Arm CPUs and the K20 GPU, then OpenACC runs
on the remaining set of platforms, with PP = 68.6% (|H|=7)

e Excluding Power 9 and AMD Naples, OpenCL will run with PP =68.3% (|H|=7)

* Finally, restricting the set of platforms to just NVIDIA GPUs, CUDA will run with
PP=81.7% (|H|=4)

4K University of
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Skylake
KNL}
Power 9}
Naplest
ThunderX2 t

Ampere

K20

P100}
V100t

Turing

-% University u.
A& BRISTOL

Tealeaf

Lower is better

Runtime in seconds

317

370 - -
191 - -
254 393 - 341
293 375 - -
314 439 - -
445 629
190 187 122 153
281 127 81 103
a0 s
OpenMP Kokkos CUDA OpenACC

http://uob-hpc.github.io
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Observations on TealLeaf Performance Portability

* Will use “Application Efficiency”, efficiency compared to best observed
runtime, for TealLeaf and the remaining codes

e |If we exclude the AMD Radeon GPU and the NEC Aurora, then OpenMP and
Kokkos successfully run on all the remaining platforms, with PP =43.6% and
57.4%, respectively (|H| = 10)

e OpenMP results on GPU are much slower than with Kokkos, reflected in the scores

* OpenMP GPU results from LLVM/trunk as not all platforms available with Cray compiler
(which generally performs better than LLVM for OpenMP target code; see P100 result)

 When platforms = {Power 9, K20, P100, V100, Turing}, then OpenACC achieves
P=77.0%(|H| =5)

* OpenACC should work on Intel CPUs, but the code currently segfaults with PGI 18.10

4K University of
BrgleésTn‘Sfo()L http://uob-hpc.github.io GW4‘



CloverLeaf

Lower 1s better

Runtime in seconds

Skylake[ 376 - - 811 |-
KNL} 250 - - 698 -
Power 9} 376 - - - -
Naplest 327 - - 337 -
ThunderX2t 457 - - - -
Ampere - - - - -
NEC Auroraf 323 - - - -
K20 9737 |G 592 . 572
P100} 226 182 139 133 149
V100t - 130 88.8 90.1 97.9
Turingt - 228 213 199 213
Radeon VII} - - - - 106

-% University ot
A BRISTOL

OpeﬁMP Kokkos

http://uob-hpc.github.io

CUDA OpenACC OpenCL
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Observations on CloverLeaf Performance Portability

A much more broken picture than Tealeaf, with no approach working
across the whole set of platforms

* Harder to compare PP metric when there’s little portability!

 OpenMP successfully runs on all the CPU platforms with PP = 100% (|H |
=7), but struggles on the GPUs except where we had the Cray compiler

* OpenCL runs on all the GPUs, including AMD Radeon VII, with
PP=945% (|H| =5)

 OpenACC runs on all the NVIDIA GPUs except the K20 (fails to build), and
all the CPUs except Arm, nor the NEC Aurora. PP =62.4% (|H| = 7)

* Kokkos runs on all the GPUs except AMD Radeon VII, with PP = 62.8%
(IH] =4)

4K University of
BI]?]Ieé’SIlt}(I)OL http://uob-hpc.github.io GW%



Skylake
KNL}
Power 9}
Naplest
ThunderX2t
Ampere
K20+t

P100¢}
V100t
Turing t
Radeon VII}

-% University ot
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Neutral

Lower 1s better

Runtime in seconds
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Observations on Neutral Performance Portability

* Kokkos in the best condition here, running on all platforms except NEC Aurora
and AMD Radeon VI, with P =66.8% (|H| = 10)

* For CPUs, Kokkos achieves PP =81.7% (|H| = 6)

e OpenMP successfully runs on all the CPU platforms with PP = 100%, no target
version yet for GPUs (|H| = 6)

 OpenCL runs on all the GPUs, including AMD Radeon VII, with PP =96.8%
(IH] =5)

* Will add Intel CPU results in the future
OpenACC runs on all the NVIDIA GPUs with PP =49.8% (|H| = 4).

* Kokkos achieves PP =52.5% for these GPUs

* Will add OpenACC results for x86 and POWER CPUs in the future

e CUDA runs on all the NVIDIA GPUs with PP = 87.6%

4K University of
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Observations on MiniFMM Performance Portability

* Kokkos again does well here, running on all platforms except NEC Aurora
and AMD Radeon VII, with PP =65.6% (|H| = 10)

* MiniFMM uses identical code on CPUs and GPUs using shared memory

* OpenMP runs on all the CPU platforms with PP = 100% (|H| = 6)
* On this same set of platforms, Kokkos achieves PP = 69.3%
* No OpenMP target version yet for GPUs

* CUDA runs on all the NVIDIA GPUs with PP =100% (|H| = 4)
* Kokkos runs with PP = 60.6% here

* Kokkos does similarly well on CPU, GPU and combined groups
* Higher PP score than Tealeaf

4K University of
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PP measurements across the set of codes

* There are three platform groups of interest:
* CPU = {Skylake, KNL, Power 9, Naples, TX2}
 GPU ={K20, P100, V100, Turing}
* All = {Skylake, KNL, Power9, Naples, ThunderX2, K20, P100, V100, Turing}

* This leaves out the three least mature / well covered platforms in
our total set of 12:

* Deferred = {Ampere, NEC aurora, AMD Radeon VIl}

4K University of
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PP measurements across the the three platform groups

Higher is better

OpenMP CPU} 98.4% | 100.0% | 100.0% @ 100.0% 100.0% -

Kokkos CPU} 83.0% | 49.8% | 0.0% 80.2% | 66.1% -

OpenMP GPU} 95 39 0.0% 0.0% 0.0% -

Kokkos GPU} 99.6% | 63.8% @ 62.8% | 52.5% | 60.6% 1

OpenMP all} 97.0% | 41.0% @ 0.0% 0.0% 0.0%

Kokkos all} 89.7% | 552% | 0.0% 65.0% | 63.6% 1

BabelStreamTeaLeaf ClovérLeaf Neﬁtral MiniFMM

Elic University of
BRISTOL

http://uob-hpc.github.io

Useful observations reading across the rows:

On CPUs, OpenMP gets the best performance,
with Kokkos 17-50% slower

On GPUs, the support for a robust OpenMP
offload across all platforms is lacking. Kokkos
generally does better than OpenMP on GPUs
OpenMP all: The lack of widespread support of
OpenMP on GPUs means overall performance
portability is lacking as of today

Kokkos all: only CloverLeaf on CPUs a problem
today. This shows performance portability is
possible, with our Kokkos results generally being
within 33% of the “best” for a given platform.
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Overall Performance Portability observations thus far

* Avery mixed bag

* Alanguage may do well on one code, then poorly on the next

* Big differences between compilers for PP (esp. OpenMP target)

* OpenMP often achieving the best platform coverage

* Kokkos also achieving reasonable coverage

* OpenACC struggling for coverage on the CPUs (x86. A64fx? TX47?)

* OpenCL enjoying a resurgence with fast AMD GPUs re-emerging,
Intel HPC GPUs on the horizon, and portability across some CPUs
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Lessons learned about achieving performance portability

1. Use open (standard) parallel programming languages supported by
multiple vendors across multiple hardware platforms
 E.g. OpenMP, Kokkos, Raja, SYCL, ...?

2. Expose maximal parallelism at all levels of the algorithm and
application

3. Avoid over-optimising for any one platform
 Optimise for at least two different platforms at once

4. Multi-objective autotuning can significantly improve performance

 Autotune for more than one target at once

 See: Exploiting auto-tuning to analyze and improve performance portability
on many-core architectures, J.Price and S. Mclntosh-Smith, PA3MA, ISC’17
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Lines of code (normalized to lowest)

BabelStream Tealeaf CloverlLeaf Neutral MiniFMM
B OpenMP B OpenMP Target ®m Kokkos CPU m Kokkos GPU m CUDA m OpenACC m OpenCL
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Recommendations and call to arms -1

* The current state of PP is not good enough and radical
intervention is required

* Set up a long-term Performance Portability improvement program
3 M’s: Mandate it, Measure it, Maintain it

* Need to select a broad-enough set of target platforms and codes,
and mandate a PP score of at least 80% for this set

* Driven by users, with buy-in from PP solutions providers and
platform vendors

 Must be led by an independent party
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Recommendations and call to arms - |l

* Performance Portability must be elevated to a mandatory
requirement for future procurements, Exascale programs etc.

* Add requirements that are objective and measurable, just like
benchmark results

e E.g. a set of codes (real and mini-apps) must hit the PP application
efficiency metric of at least 80% across the platform set consisting of
Volta GPUs from Summit/Sierra and Xe GPUs in Aurora. Sensible to
include Rome, A64fx, ThunderX4. Chose a set of codes from ECP.

* Bristol’s contribution is to open source our “BabelSuite” of codes
in as many languages and on as many platforms as we can,
complete with build and run scripts
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The Bristol HPC team doing this work

Tom Deakin Patrick Atkinson Andrei Poenaru James Price

Also: Matt Martineau (now at NVIDIA), Codrin Popa and Justin Salmon
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For more information

Bristol HPC group:  https://uob-hpc.github.io/

Build & run scripts: https://github.com/UoB-HPC/benchmarks

Isambard: http://gw4.ac.uk/isambard/

Twitter: @simonmcs
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* High Performance in silico Virtual Drug Screening on Many-Core Processors
S. Mclntosh-Smith, J. Price, R.B. Sessions, A.A. Ibarra, JHPCA 2014

* On the performance portability of structured grid codes on many-core computer architectures
S.N. MclIntosh-Smith, M. Boulton, D. Curran, & J.R. Price
ISC, Leipzig, June 2014. DOI: 10.1007/978-3-319-07518-1 4

* Assessing the Performance Portability of Modern Parallel Programming Models using Tealeaf
Martineau, M., McIntosh-Smith, S. & Gaudin, W.
Concurrency and Computation: Practice and Experience (Apr 2016)

 GPU-STREAM v2.0: Benchmarking the achievable memory bandwidth of many-core processors
across diverse parallel programming models
Deakin, T. J., Price, J., Martineau, M. J. & McIntosh-Smith, S. N.
First International Workshop on Performance Portable Programming Models for Accelerators
(P3MA), ISC 2016

* The Productivity, Portability and Performance of OpenMP 4.5 for Scientific Applications

Targeting Intel CPUs, IBM CPUs, and NVIDIA GPUs
M. Martineau and S. Mclntosh-Smith, IWOMP 2017, Stony Brook, USA.
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* Evaluating Attainable Memory Bandwidth of Parallel Programming Models via BabelStream
Deakin, T, Price, J, Martineau, M, and McIntosh-Smith, S
International Journal of Computational Science and Engineering (special issue), vol 17., 2018

* Pragmatic Performance Portability with OpenMP 4.x
Martineau, Matt, Price, James, Mclntosh-Smith, Simon, and Gaudin, Wayne
Proceedings of the 12th International Workshop on OpenMP, 2016

* Performance Analysis and Optimization of Clang’s OpenMP 4.5 GPU Support
Martineau, Matt, Mclntosh-Smith, Simon, Bertolli, Carlo, et al
Proceedings of the International Workshop on Performance Modeling, Benchmarking
and Simulation of High Performance Computer Systems (PMBS), 2016, SC’16

* Exploiting auto-tuning to analyze and improve performance portability on many-
core architectures
Price, J. & Mclntosh-Smith, S., PA3MA, ISC High Performance 2017 International Workshops,
Revised Selected Papers. Springer, Cham, p.538-556, vol. 10524 LNCS
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