
Performance Portability Across
Diverse Computer Architectures

Prof Simon McIntosh-Smith
HPC research group
University of Bristol

http://uob-hpc.github.io

Recent processor trends in HPC

http://uob-hpc.github.io

FPGAs

GPUs

Many-core CPUs

Emerging architectures

http://uob-hpc.github.io

Google’s Tensorflow Processing Unit (TPU), GraphCore, Intel’s Nervana

Slide | 2 | © GRAPHCORE LTD, 2017

InvestorsProductsTechnology

$30m Series A July 2016AI Servers and AcceleratorsIntelligence Processing Unit

http://uob-hpc.github.io

Graphcore IPU pair – 600MB @ 90TB/s

Recent CPU trends

• CPUs have evolved to include lots of cores and wide vector units

• 32 core CPUs now common (AMD Naples, Marvell ThunderX2)

• 48, 64 core CPUs arrive within the next 12 months (A64fx, Rome)

• This renewed competition in CPUs is crucial to the health of the HPC

ecosystem, and for performance per dollar

• What about competition in GPUs? Intel and AMD…?

http://uob-hpc.github.io

AMD’s Rome showing where mainstream CPUs are heading

From late 2019:
• Up to 64 heavyweight x86 cores per CPU
• Uses 8 chiplets of 8 cores each, plus an I/O chiplet

http://uob-hpc.github.io

Chiplets likely to be an important future trend…

http://uob-hpc.github.io

Emerging competition from Arm CPU vendors

A bit of history on Performance Portability in Bristol

http://uob-hpc.github.io

What do I mean by “performance portability?”
“A code is performance portable if it can achieve a similar fraction
of peak hardware performance on a range of different target
architectures.”

Questions:
• Does it have to be a “good” fraction? YES! Within 20% of “best

achievable”, i.e. of hand-optimized OpenMP, CUDA, …
• How wide is the range of target architectures? Depends on your

goal, but important to allow for future architectural developments

http://uob-hpc.github.io

http://uob-hpc.github.io

Bristol’s first performance portable project:
The BUDE molecular docking code

"High Performance in silico Virtual Drug Screening on Many-Core Processors",
S. McIntosh-Smith, J. Price, R.B. Sessions, A.A. Ibarra, IJHPCA 2014

http://uob-hpc.github.io

What about bandwidth bound codes?
• We developed “BabelStream” to measure the achievable fraction

of peak memory bandwidth (formerly known as “GPU-STREAM”)

• Cross platform

• CPUs, GPUs, …

• Cross language

• C/C++, OpenMP inc. target, CUDA, OpenACC, Kokkos, SYCL, …

• http://uob-hpc.github.io/BabelStream/

Deakin, T., Price, J., Martineau, M., & McIntosh-Smith, S. Evaluating attainable memory bandwidth of parallel
programming models via BabelStream. International Journal of Computational Science and Engineering, April 2017.

http://uob-hpc.github.io

http://uob-hpc.github.io/BabelStream/results/

http://uob-hpc.github.io

http://uob-hpc.github.io
From: http://uob-hpc.github.io/BabelStream/results/

http://uob-hpc.github.io/BabelStream/results/

http://uob-hpc.github.io

ISC 2014

After BabelStream, more realistic bandwidth bound codes

http://uob-hpc.github.io

S.N. McIntosh-Smith, M. Boulton, D. Curran, & J.R. Price, “On the
performance portability of structured grid codes on many-core computer
architectures”, ISC, Leipzig, June 2014. DOI: 10.1007/978-3-319-07518-1_4

After BabelStream, more realistic bandwidth bound codes

http://uob-hpc.github.io

S.N. McIntosh-Smith, M. Boulton, D. Curran, & J.R. Price, “On the
performance portability of structured grid codes on many-core computer
architectures”, ISC, Leipzig, June 2014. DOI: 10.1007/978-3-319-07518-1_4

After BabelStream, more realistic bandwidth bound codes

http://uob-hpc.github.io

S.N. McIntosh-Smith, M. Boulton, D. Curran, & J.R. Price, “On the
performance portability of structured grid codes on many-core computer
architectures”, ISC, Leipzig, June 2014. DOI: 10.1007/978-3-319-07518-1_4

More complex bandwidth bound codes

http://uob-hpc.github.io

• Implicit, sparse, matrix-free solvers, structured grid
• Conjugate Gradient (CG)
• Chebyshev
• Preconditioned Polynomial CG (PPCG)

• Memory bandwidth bound
• Good strong and weak scaling on Titan & Piz Daint

TeaLeaf heat conduction mini-app from the
Mantevo suite of benchmarks

McIntosh-Smith, S., Martineau, M., et al. TeaLeaf: a mini-application to enable design-
space explorations for iterative sparse linear solvers. WRAp workshop, IEEE Cluster
2017, Honolulu, USA.

TeaLeaf Performance Portability on GPUs

For TeaLeaf, all of the programming models got to within
25% of the performance of hand-optimised OpenCL / CUDA

Martineau, M., McIntosh-Smith, S. Gaudin, W., Assessing the Performance Portability
of Modern Parallel Programming Models using TeaLeaf, 2016, CC-PE

http://uob-hpc.github.io

Performance Portability: the next phase

http://uob-hpc.github.io

http://uob-hpc.github.io

A more rigorous metric for Performance Portability

For a given set of platforms H, the performance portability P of an
application a solving problem p is:

Where ei(a,p) is the performance efficiency of application a solving
problem p on platform i.

http://uob-hpc.github.io

Two ways to measure Performance Portability
Definitions from the Pennycook, Sewall and Lee paper:

1. Architectural efficiency:
Achieved performance as a fraction of peak theoretical hardware
performance. This represents the ability of an application to utilize
hardware efficiently;

2. Application efficiency:
Achieved performance as a fraction of best observed performance.
This represents the ability of an application to use the most
appropriate implementation and algorithm for each platform

http://uob-hpc.github.io

A systematic evaluation of Performance Portability
• Studying Performance Portability is hard!
• Have to be rigorous about doing as well as possible across a wide range issues:

architectures, programming languages, algorithms, compilers, …
• It takes a lot of effort to do this well
• Motivated by our results so far, in Bristol we have initiated a wide-

ranging evaluation of Performance Portability:
• Across many codes
• Across many programming languages
• Across many architectures

• Our goal is to share these codes and results to further the fundamental
understanding of performance portability

http://uob-hpc.github.io

Codes in the Bristol Performance Portability study

BabelStream: simple measure of achievable memory bandwidth
CloverLeaf: structured grid hydrodynamics
TeaLeaf: structured grid heat diffusion
Neutral: Monte Carlo neutral particle transport
MiniFMM: fast multipole method
SNAP*: structured grid deterministic neutral particle transport
unSNAP*: unstructured grid deterministic neutral particle transport
Mini-HYDRA: unstructured grid CFD (name TBC)
Mini-PRECISE: combustion code

http://uob-hpc.github.io
* = work in progress

• OpenMP
• OpenMP target
• Kokkos CPU
• Kokkos GPU
• OpenACC

• CUDA
• OpenCL
• RAJA*
• SYCL*
• Flat MPI*

http://uob-hpc.github.io

Parallel programming languages in the Bristol PP study

* = to come

CPUs:
• Intel Skylake
• Intel KNL
• AMD Naples, Rome*
• IBM POWER9
• Marvell ThunderX2
• Marvell ThunderX3/4/5*
• Ampere eMAG
• Fujitsu A64fx*

Accelerators:
• NEC Aurora
• NVIDIA Turing
• NVIDIA Volta
• NVIDIA Pascal
• AMD Radeon VII
• FPGAs*

http://uob-hpc.github.io

Target hardware platforms

* = to come

http://uob-hpc.github.io

Hardware informationArchitecture Sockets Cores Clocks Speed
(GHz)

Peak DP
FLOP/s

Peak SP
FLOP/s

Peak BW
(GB/s)

Skylake 2 28 2.1 3.76 7.53 256
KNL 1 64 1.3 2.66 5.32 490
Power 9 2 20 3.2 1.02 2.05 340
Naples 2 32 2.0 1.02 2.05 288
ThunderX2 2 32 2.5 1.28 2.56 288
Ampere 1 32 3.3 0.21 0.42 159
NEC Aurora 1 8 1.4 2.15 4.30 1,200
K20 0.71 1.18 3.52 208
P100 1.13 4.04 8.07 732
V100 1.37 7.01 14.03 900
Turing 1.35 0.37 11.75 616
Radeon VII 1.40 3.50 13.80 1,000

3.76

2.66

1.02 1.02 1.28

0.21

2.15
1.18

4.04

7.01

0.37

3.50

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

Sky
lake KNL

Power 9

Nap
les

ThunderX
2

Am
pere

NEC A
uro

ra K20
P100

V100

Turin
g

Rad
eon V

II

http://uob-hpc.github.io

Peak D.P.
FLOP/s

Peak BW
GB/s

256

490
340 288 288

159

1,200

208

732
900

616

1,024

0

200

400

600

800

1,000

1,200

1,400

Sky
lake KNL

Power 9

Nap
les

ThunderX
2

Am
pere

NEC A
uro

ra K20
P100

V100

Turin
g

Rad
eon V

II

Quantifying performance: CPU memory bandwidth

http://uob-hpc.github.io

 -

 2,000

 4,000

 6,000

 8,000

 10,000

 12,000

 1KB 2KB 4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB 2MB 4MB 8MB 16MB

A
gg

re
ga

te
 b

an
dw

id
th

 in
 G

iB
/s

Transfer size

Skylake ThunderX2 POWER9 Naples Ampere

Quantifying performance: GPU memory bandwidth

http://uob-hpc.github.io

0

1,000

2,000

3,000

4,000

5,000

6,000

 1KB 2KB 4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB 2MB 4MB 8MB

Ag
gr

eg
at

e
ba

nd
w

id
th

 in
 G

iB
/s

Transfer size

V100 P100 RTX 2080 Ti K20

Quantifying performance: CPU memory latency

http://uob-hpc.github.io

1

2

4

8

16

32

64

128

1KB
2KB

4KB
8KB

16KB
32KB

64KB
128KB

256KB
512KB

1MB
2MB

4MB
8MB

16MB
32MB

64MB

128MB

256MB

512MB

M
em

or
y

ac
ce

ss
 la

te
nc

y
(n

s)

Transfer size

Skylake ThunderX2 POWER9 Naples Ampere

Bristol Performance Portability study
Latest results

http://uob-hpc.github.io

BabelStream

http://uob-hpc.github.io

Achieved bandwidth (GB/s)

OpenMP Kokkos CUDA OpenACC OpenCL

Skylake
KNL

Power 9
Naples

ThunderX2
Ampere

NEC Aurora
K20

P100
V100

Turing
Radeon VII

205
452
248
240
246
106
976
144
553
774
528

-

174
304
250
191
244
91
-

152
557
828
554

-

-
-
-
-
-
-
-

150
552
833
556

-

83
444
247
257

-
-
-
-

552
829
555

-

107
286

-
-
-
-
-

151
551
839
554
814

Higher is better

Architectural efficiency
(Fraction of hardware peak)

OpenMP Kokkos CUDA OpenACC OpenCL

Skylake
KNL

Power 9
Naples

ThunderX2
Ampere

NEC Aurora
K20

P100
V100

Turing
Radeon VII

80.2%
92.2%
72.8%
83.4%
85.3%
66.4%
81.3%
69.2%
75.5%
86.0%
85.7%

-

68.1%
62.1%
73.6%
66.2%
84.7%
57.3%

-
72.9%
76.1%
92.0%
90.0%

-

-
-
-
-
-
-
-

72.3%
75.4%
92.6%
90.2%

-

32.4%
90.7%
72.5%
89.3%

-
-
-
-

75.3%
92.1%
90.1%

-

41.8%
58.4%

-
-
-
-
-

72.8%
75.3%
93.2%
89.9%
79.4%

Higher is better

Observations on BabelStream Performance Portability
• Today, no language runs successfully on all our platforms
• If we exclude the AMD Radeon GPU, then OpenMP successfully runs on all the

remaining platforms, with PP = 79.1% (|H|, the number of platforms included
in the metric, is 11)

• Excluding the NEC Aurora, then Kokkos can run across the remaining set with
PP = 72.7% (|H|=10)

• If we further exclude all the Arm CPUs and the K20 GPU, then OpenACC runs
on the remaining set of platforms, with PP = 68.6% (|H|=7)

• Excluding Power 9 and AMD Naples, OpenCL will run with PP = 68.3% (|H|=7)
• Finally, restricting the set of platforms to just NVIDIA GPUs, CUDA will run with

PP = 81.7% (|H|=4)

http://uob-hpc.github.io

OpenMP Kokkos CUDA OpenACC

Skylake

KNL

Power 9

Naples

ThunderX2

Ampere

K20

P100

V100

Turing

317

191

254

293

314

793

1605

190

281

962

370

885

393

375

439

892

712

187

127

181

-

-

-

-

-

-

445

122

81

116

-

-

341

-

-

-

629

153

103

139

Lower is better

TeaLeaf

http://uob-hpc.github.io

Runtime in seconds

Observations on TeaLeaf Performance Portability
• Will use “Application Efficiency”, efficiency compared to best observed

runtime, for TeaLeaf and the remaining codes
• If we exclude the AMD Radeon GPU and the NEC Aurora, then OpenMP and

Kokkos successfully run on all the remaining platforms, with PP = 43.6% and
57.4%, respectively (|H| = 10)
• OpenMP results on GPU are much slower than with Kokkos, reflected in the scores
• OpenMP GPU results from LLVM/trunk as not all platforms available with Cray compiler

(which generally performs better than LLVM for OpenMP target code; see P100 result)

• When platforms = {Power 9, K20, P100, V100, Turing}, then OpenACC achieves
P = 77.0% (|H| = 5)
• OpenACC should work on Intel CPUs, but the code currently segfaults with PGI 18.10

http://uob-hpc.github.io

OpenMP Kokkos CUDA OpenACC OpenCL

Skylake
KNL

Power 9
Naples

ThunderX2
Ampere

NEC Aurora
K20

P100
V100

Turing
Radeon VII

376
250
376
327
457
1309
323

226
-
-
-

-
-
-
-
-
-
-

1371
182
130
228

-

-
-
-
-
-
-
-

592
139
88.8
213

-

877
698
768
337

-
-
-
-

133
90.1
199

-

-
-
-
-
-
-
-

572
149
97.9
213
106

9737

Lower is better
CloverLeaf

http://uob-hpc.github.io

Runtime in seconds

Observations on CloverLeaf Performance Portability
• A much more broken picture than TeaLeaf, with no approach working

across the whole set of platforms
• Harder to compare PP metric when there’s little portability!

• OpenMP successfully runs on all the CPU platforms with PP = 100% (|H|
= 7), but struggles on the GPUs except where we had the Cray compiler

• OpenCL runs on all the GPUs, including AMD Radeon VII, with
PP = 94.5% (|H| = 5)

• OpenACC runs on all the NVIDIA GPUs except the K20 (fails to build), and
all the CPUs except Arm, nor the NEC Aurora. PP = 62.4% (|H| = 7)

• Kokkos runs on all the GPUs except AMD Radeon VII, with PP = 62.8%
(|H| = 4)

http://uob-hpc.github.io

OpenMP Kokkos CUDA OpenACC OpenCL

Skylake
KNL

Power 9
Naples

ThunderX2
Ampere

K20
P100
V100

Turing
Radeon VII

8.0
23.8
8.3

15.3
12.6
39.4

-
-
-
-
-

13.0
28.1
10.0
17.5
13.5
43.9
52.7
9.5
5.6
9.3
-

-
-
-
-
-
-

41.6
4.4
2.8
6.9
-

-
-
-
-
-
-

88.4
9.5
3.7
8.7
-

-
-
-
-
-
-

29.7
3.9
3.3
6.7
3.7

Lower is better
Neutral

http://uob-hpc.github.io

Runtime in seconds

Observations on Neutral Performance Portability
• Kokkos in the best condition here, running on all platforms except NEC Aurora

and AMD Radeon VII, with P = 66.8% (|H| = 10)
• For CPUs, Kokkos achieves PP = 81.7% (|H| = 6)

• OpenMP successfully runs on all the CPU platforms with PP = 100%, no target
version yet for GPUs (|H| = 6)

• OpenCL runs on all the GPUs, including AMD Radeon VII, with PP = 96.8%
(|H| = 5)
• Will add Intel CPU results in the future

• OpenACC runs on all the NVIDIA GPUs with PP = 49.8% (|H| = 4).
• Kokkos achieves PP = 52.5% for these GPUs
• Will add OpenACC results for x86 and POWER CPUs in the future

• CUDA runs on all the NVIDIA GPUs with PP = 87.6%

http://uob-hpc.github.io

OpenMP Kokkos CUDA

Skylake

KNL

Power 9

Naples

ThunderX2

Ampere

K20

P100

V100

Turing

8.7

11.4

23.6

15.4

21.9

116

-

-

-

-

12.9

20.2

38.5

19.6

30.6

127

28.2

4.7

4.4

4.2

-

-

-

-

-

-

17.3

3.5

2.5

2.3

Lower is better
MiniFMM

http://uob-hpc.github.io

Runtime in seconds

Observations on MiniFMM Performance Portability
• Kokkos again does well here, running on all platforms except NEC Aurora

and AMD Radeon VII, with PP = 65.6% (|H| = 10)
• MiniFMM uses identical code on CPUs and GPUs using shared memory

• OpenMP runs on all the CPU platforms with PP = 100% (|H| = 6)
• On this same set of platforms, Kokkos achieves PP = 69.3%
• No OpenMP target version yet for GPUs

• CUDA runs on all the NVIDIA GPUs with PP = 100% (|H| = 4)
• Kokkos runs with PP = 60.6% here

• Kokkos does similarly well on CPU, GPU and combined groups
• Higher PP score than TeaLeaf

http://uob-hpc.github.io

PP measurements across the set of codes
• There are three platform groups of interest:
• CPU = {Skylake, KNL, Power 9, Naples, TX2}

• GPU = {K20, P100, V100, Turing}

• All = {Skylake, KNL, Power9, Naples, ThunderX2, K20, P100, V100, Turing}

• This leaves out the three least mature / well covered platforms in
our total set of 12:
• Deferred = {Ampere, NEC aurora, AMD Radeon VII}

http://uob-hpc.github.io

PP measurements across the the three platform groups

BabelStreamTeaLeaf CloverLeaf Neutral MiniFMM

OpenMP CPU

Kokkos CPU

OpenMP GPU

Kokkos GPU

OpenMP all

Kokkos all

98.4%

83.0%

95.3%

99.6%

97.0%

89.7%

100.0%

49.8%

23.6%

63.8%

41.0%

55.2%

100.0%

0.0%

0.0%

62.8%

0.0%

0.0%

100.0%

80.2%

0.0%

52.5%

0.0%

65.0%

100.0%

66.1%

0.0%

60.6%

0.0%

63.6%

Higher is better

http://uob-hpc.github.io

Useful observations reading across the rows:

• On CPUs, OpenMP gets the best performance,
with Kokkos 17-50% slower

• On GPUs, the support for a robust OpenMP
offload across all platforms is lacking. Kokkos
generally does better than OpenMP on GPUs

• OpenMP all: The lack of widespread support of
OpenMP on GPUs means overall performance
portability is lacking as of today

• Kokkos all: only CloverLeaf on CPUs a problem
today. This shows performance portability is
possible, with our Kokkos results generally being
within 33% of the “best” for a given platform.

Overall Performance Portability observations thus far
• A very mixed bag

• A language may do well on one code, then poorly on the next

• Big differences between compilers for PP (esp. OpenMP target)

• OpenMP often achieving the best platform coverage

• Kokkos also achieving reasonable coverage

• OpenACC struggling for coverage on the CPUs (x86. A64fx? TX4?)

• OpenCL enjoying a resurgence with fast AMD GPUs re-emerging,

Intel HPC GPUs on the horizon, and portability across some CPUs

http://uob-hpc.github.io

Lessons learned about achieving performance portability
1. Use open (standard) parallel programming languages supported by

multiple vendors across multiple hardware platforms
• E.g. OpenMP, Kokkos, Raja, SYCL, …?

2. Expose maximal parallelism at all levels of the algorithm and
application

3. Avoid over-optimising for any one platform
• Optimise for at least two different platforms at once

4. Multi-objective autotuning can significantly improve performance
• Autotune for more than one target at once
• See: Exploiting auto-tuning to analyze and improve performance portability

on many-core architectures, J.Price and S. McIntosh-Smith, P^3MA, ISC’17

http://uob-hpc.github.io

Lines of code (normalized to lowest)

http://uob-hpc.github.io

0.00

0.50

1.00

1.50

2.00

2.50

BabelStream TeaLeaf CloverLeaf Neutral MiniFMM

OpenMP OpenMP Target Kokkos CPU Kokkos GPU CUDA OpenACC OpenCL

Recommendations and call to arms – I
• The current state of PP is not good enough and radical

intervention is required
• Set up a long-term Performance Portability improvement program
• 3 M’s: Mandate it, Measure it, Maintain it

• Need to select a broad-enough set of target platforms and codes,
and mandate a PP score of at least 80% for this set

• Driven by users, with buy-in from PP solutions providers and
platform vendors

• Must be led by an independent party

http://uob-hpc.github.io

Recommendations and call to arms – II
• Performance Portability must be elevated to a mandatory

requirement for future procurements, Exascale programs etc.
• Add requirements that are objective and measurable, just like

benchmark results
• E.g. a set of codes (real and mini-apps) must hit the PP application

efficiency metric of at least 80% across the platform set consisting of
Volta GPUs from Summit/Sierra and Xe GPUs in Aurora. Sensible to
include Rome, A64fx, ThunderX4. Chose a set of codes from ECP.

• Bristol’s contribution is to open source our “BabelSuite” of codes
in as many languages and on as many platforms as we can,
complete with build and run scripts

http://uob-hpc.github.io

The Bristol HPC team doing this work

http://uob-hpc.github.io

Tom Deakin Patrick Atkinson Andrei Poenaru James Price

Also: Matt Martineau (now at NVIDIA), Codrin Popa and Justin Salmon

For more information

Bristol HPC group: https://uob-hpc.github.io/

Build & run scripts: https://github.com/UoB-HPC/benchmarks

Isambard: http://gw4.ac.uk/isambard/

Twitter: @simonmcs

http://uob-hpc.github.io

https://uob-hpc.github.io/
https://github.com/UoB-HPC/benchmarks
http://gw4.ac.uk/isambard/

• High Performance in silico Virtual Drug Screening on Many-Core Processors
S. McIntosh-Smith, J. Price, R.B. Sessions, A.A. Ibarra, IJHPCA 2014

• On the performance portability of structured grid codes on many-core computer architectures
S.N. McIntosh-Smith, M. Boulton, D. Curran, & J.R. Price
ISC, Leipzig, June 2014. DOI: 10.1007/978-3-319-07518-1_4

• Assessing the Performance Portability of Modern Parallel Programming Models using TeaLeaf
Martineau, M., McIntosh-Smith, S. & Gaudin, W.
Concurrency and Computation: Practice and Experience (Apr 2016)

• GPU-STREAM v2.0: Benchmarking the achievable memory bandwidth of many-core processors
across diverse parallel programming models
Deakin, T. J., Price, J., Martineau, M. J. & McIntosh-Smith, S. N.
First International Workshop on Performance Portable Programming Models for Accelerators
(P3MA), ISC 2016

• The Productivity, Portability and Performance of OpenMP 4.5 for Scientific Applications
Targeting Intel CPUs, IBM CPUs, and NVIDIA GPUs
M. Martineau and S. McIntosh-Smith, IWOMP 2017, Stony Brook, USA.

http://uob-hpc.github.io

• Evaluating Attainable Memory Bandwidth of Parallel Programming Models via BabelStream
Deakin, T, Price, J, Martineau, M, and McIntosh-Smith, S
International Journal of Computational Science and Engineering (special issue), vol 17., 2018

• Pragmatic Performance Portability with OpenMP 4.x
Martineau, Matt, Price, James, McIntosh-Smith, Simon, and Gaudin, Wayne
Proceedings of the 12th International Workshop on OpenMP, 2016

• Performance Analysis and Optimization of Clang’s OpenMP 4.5 GPU Support
Martineau, Matt, McIntosh-Smith, Simon, Bertolli, Carlo, et al
Proceedings of the International Workshop on Performance Modeling, Benchmarking
and Simulation of High Performance Computer Systems (PMBS), 2016, SC’16

• Exploiting auto-tuning to analyze and improve performance portability on many-
core architectures
Price, J. & McIntosh-Smith, S., P^3MA, ISC High Performance 2017 International Workshops,
Revised Selected Papers. Springer, Cham, p.538-556, vol. 10524 LNCS

http://uob-hpc.github.io

