SHAPING
TOMORROW

‘II

SC

High Performance

JUNE 24 - JULY 2, 2021 | ISC-HPC.COM

Andrei Poenaru

Wei-Chen Lin

Simon Mclntosh-Smith

A Performance Analysis of
Modern Parallel Programming Models
Using a Compute-Bound Application

University of Engineering and
BRISTOL o B e s

Introduction to the GW4 Isambard 2 supercomputer

* Isambard 2 is a £4.1M EPSRC project, run by a consortium of the
GW4 Alliance, the Met Office, HPE/Cray, Fujitsu and Arm, to
deliver a Tier-2 HPC service to researchers across the UK and
around the world

* Funded in late 2019, Isambard 2 builds on Isambard 1’s
achievements as the world’s first Arm64-based production
supercomputer

* Isambard 1 has been a huge success, proving for the first time that
Arm works for supercomputing in production environments

University Of . Engir]eelring and GV / 4;
BRISTOL o B e s /

Isambard 2 production system

* Cray XC50 ‘Scout’ with Aries interconnect

e 21,504 ARMvS8 cores (336n x 2s x 32c)
e Marvell ThunderX2 32 core @ 2.5 GHz
 HPE Apollo 80 A64FX system
e 3,456 Fujitsu A64FX cores (72n x 48c)
* Multi-Architecture Comparison System

* CXL, Rome, V100, ...
* Used for previous performance portability work [1]

* Cray HPC optimised software stack

* Hosted for the Consortium by the Met Office in
Exeter

}

F = HiE | iE e = = (2 i R
il 4 il i ¢ p J §
o Al g = A= 48 8 2 4 i g i
| }

. | de e B | |

\ A | I N

\ |

& - f . . . “‘ |

10
Ll

i

1
{

i
[
LEOROQ) DD

t

!
5[

—_

= s) &=

-]

PTESTITITTITIIE STTEIY
|
AAd8dd 1000

- UﬂlVGI'Slt Of . Engineering and Gg VJ"_
¥ BRISTOL chyea Selence /,

Performance Portability

* The upcoming exascale systems together utilise combinations of
CPUs from two vendors and GPUs from three vendors

* It is not desirable to use platform- or vendor-specific programming models

* A portable approach is needed

 The C++ language has particular appeal
* It can achieve performance similar to C and Fortran

* |t offers modern features to write more expressive and safer code

* Parallel C++ hopes to outweigh any lost performance with
programmer productivity

University Of . Engineering and G% Vﬁ"_\
BRISTOL g B o scnce. ,

Modern Programming Models

 Two modern, single-source frameworks with a focus on
performance, portability, and productivity have emerged:
Kokkos and SYCL
. | Py
* Kokkos is a new framework developed natively for C++
* Distributed as source, builds with the host compiler ‘

e SYCL builds on previous OpenCL toolchains and integrates them with
modern C++

* Compilers: ComputeCpp, DPC++, hipSYCL (SYCL

* Both frameworks can generate machine code for CPUs and GPUs

without any change to the high-level source code
Bl University of

S . Engineering and G% VJ"_\
BRISTOL o B e s /

The Bristol University Docking Engine (BUDE)

 BUDE is an application for in silico molecular docking

 Predicts the structures formed between molecules and
estimates the strength of their interactions [2]

* Docking is computationally challenging because of the many
different ways in which two molecules may be arranged together

* 3 translational and 3 rotational degrees of freedom
e Order of 10/ trials

 The most computationally intensive mode is virtual screening

* Molecules of drug candidates (/igands) are generated using a genetic
, algorithm and are bonded to a target protein molecule
B Univers

: IliVel’SltY Of Engiqeering and
BRISTOL g W oo

MiniBUDE: A Compute-Bound Mini-App

* A mini-app for BUDE virtual-screening runs

* Kernels written in widely used parallel programming models

e Baseline implementation written in OpenCL — virtually identical to the
core kernel of the full-scale BUDE application

* CUDA port with minimal changes

* CPU OpenMP
* OpenMP target and OpenACC based on CPU version

* Re-implementations in Kokkos and SYCL

* Achieves >56% of peak compute performance on CXL and Rome

University Of . Engineering and Gg V4"_
BRISTOL KL JREEtes ,

Evaluation Methodology

* All mainstream HPC compilers applicable to each model

* All optimisations enabled and target set explicitly, similar to

-march=native -Ofast
* Thread binding, e.g. with OMP_PROC_BIND or aprun

* Two input decks:
* Small - 26 ligands
* Large — 2672 ligands

 Warm-up + 8 iterations, 2® poses per iteration

* |terations correspond to genetic algorithm generations

UIHV@I’Slty Of . E:gir.\eelrisng. and
BRISTOL g B il sdence

GV

Hardware

13.8 TFLOP/s

5.5 TFLOP/s
5.7 TFLOP/s
4.0 TFLOP/s

2.6 TFLOP/s

AMD EPYC Rome 7742 2x64 2.25 GHz

Fujitsu A64FX 48 1.8 GHz
CPUs

Intel Skylake 8176 2x28 2.1 GHz

Intel Cascade Lake 6230 2x20 2.1 GHz

Marvell ThunderX2 2x32 2.5 GHz

AMD Radeon VII 1.4 GHz
GPUs ,

Intel Iris Pro 580 72 0.95 GHz

NVIDIA V100 80 1.13 GHz

University of % . Engineering and
BRISTOL Physical Sciences

13.8 TFLOP/s
1.1 TFLOP/s
15.7 TFLOP/s

GV

Results: CPU + OpenMP

600
Compiler * Compiler versions are latest
= AMD]
. 500 mmm Cray available
& mmm GNU o
% 200 — el * Full details in the paper
3 mem LLVM
o B Arm
g 300 Fujitsu * Vectorisation played a big role in
C . o
g achieving good performance
5 200
g
100 * The A64FX relies on the heavy
. I I || optimisations from the Fujitsu
SKL-56 CXL-40 Rome-128 TX2-64 AGAFX-48 compiler

Platform

* Including software pipelinin
Higher numbers correspond to higher performance. & PP &

University of % Enginesring and
BRISTOL Physical Sciences

CPU + OpenMP Workgroup Size

Relative Performance

 Heatmap shows fractions of
performance, normalised to best
result on each platform

AG4FX-48

CXL-40

* The workgroup size influenced both
vectorisation and loop unrolling

* Forcing unrolling and interleaving in the SKL-56
compiler helps on A64FX

Rome-128

Platform

TX2-64 . . 0.94 0.94
* In general, the more 00O resources 16 52 64 128 256 512
available, the higher the optimal plock size (poses)
WO rkg roup size Lighter colours correspond to higher performance.

University of Engineering and
BRISTOL o B e s

Results: CPU + Kokkos

700

e Strong correlation to

Compiler

AMD baseline OpenMP results

Cray

600

500 Intel

|
- GNU * Indicated Kokkos uses
- LLVM OpenMP backend efficiently

Arm

400 on all architectures

Fujitsu

e Fujitsu Compiler critical for
| | A64FX [3]
II I e Cray compiler usually fastest
I II 1 II otherwise

SKL-56 CXL-40 Rome-128 TX2-64 AGAFX-48
Platform

University of Enginesring and
BRISTOL o B e s

30

Performance (poses/ms)
o

N
o
o

10

o

o

Results: GPU

Performance normalised to best result

10 CUDA SYCL OpenCL
on each platform
o Bars missing where models not usable
 OpenACC usable with GNU on Radeon VI,
@ Model but only used a single thread
S 00 mmm CUDA/HIP
€ mmm OpenCL
“'g mmm OpenMP
$ o = OpenACC No model performed best on all
s Kokkos
— vt platforms
- I I * But OpenCL achieved >80% everywhere!
. i I Note that these are very different
V100 IrisPro580 RadeonViIl C|asseS Of devices
Platform
Universj.ty Of % Ep‘gir}eelrisng- and
BRISTOL o oo

Results: SYCL

350

 SYCL1.2.1,using sycl::nd _range

Compiler
EmE OneAPI o . , .
300 = hipSYCL Retains OpenCL’'s copy to local memory via
mm= ComputeCPP async_work_group_copy

N
o1
o

* Alternative implementation using
parallel forandsycl::range

e Similar performance

200

150
 Code ran on GPUs unchanged from CPUs
e On AMD and NVIDIA GPUs, hipSYCL is the

only usable implementation
) l. l .
0

CXL-40 Rome-128 IrisPro580
Platform

University of % Enginesring and
BRISTOL Physical Sciences

Performance (poses/ms)

=
o
o

Performance Portability

ABAFX-48 - 1.00 0.98 * Heatmap shows relative performance
—_— on all programming models,
normalised to the best result on each

IrisPro580 -
R platform
E RadeonVil * Lighter colours show higher performance
= Rome-128 - * Blank cells are currently impossible results
SKL.56 4 * OpenMP, Kokkos, and SYCL possible on
all platforms
TX2-64 -
* OpenMP and Kokkos within 15% of best
V100 1 performance on CPUs
CUDA Kokkos OpenACC OpenCL OpenMP SYCL * Low-level programming faster on GPUs
Model

University of T o G‘{,
BRISTOL Physical Sciences |

Summary

* Modern programming models can perform on-par with traditional ones
* Their platform support continues to grow
* True performance portability is still out of reach

* No single version of the code achieved the best performance—or at least a high
fraction of it

* Even for a small kernel, platform-specific optimisations and empirical
tuning accounted for more than 30% of the performance

* Enough to differentiate the best-performing implementation
* Immature drivers and ecosystem around SYCL was an obstacle
* Kokkos was reliable and lightweight

% University of Engineering and B V ‘
BRISTOL _ et €\

It’s easy to apply for time on Isambard

* Please contact the Isambard PI, Prof. Simon Mcintosh-Smith
simonm at cs.bris.ac.uk, who will help you determine if Isambard
will work for you. If it will, applying for an account is quick and

easy.

* Small amounts of pump-priming time are available for free, to try
porting, optimizing for Arm etc.

* Larger amounts of time for real science runs can be applied for via
the regular EPSRC “Access to HPC” calls, or via some CCPs.

UIliVCI'Sity of . Engineering and GV /4;
BRISTOL g W e ,

mailto:simonm@cs.bris.ac.uk

Thank you

* Reproducibility:
* miniBUDE code: https://github.com/UoB-HPC/miniBUDE
e Build and run scripts: https://github.com/UoB-HPC/performance-portability

e Bristol HPC Homepage: https://uob-hpc.github.io

* Publications: https://uob-hpc.github.io/publications
 Benchmarks: https://github.com/UoB-HPC/benchmarks

* |sambard: https://gw4-isambard.github.io/docs/index.html

% University of Engineering and B V ‘
BRISTOL _ et €\

https://github.com/UoB-HPC/performance-portability
https://github.com/UoB-HPC/performance-portability
https://uob-hpc.github.io/
https://uob-hpc.github.io/publications
https://github.com/UoB-HPC/benchmarks
https://gw4-isambard.github.io/docs/index.html

References

[1] T. Deakin, A. Poenaru, T. Lin, and S. McIntosh-Smith, ‘Tracking Performance
Portability on the Yellow Brick Road to Exascale’. Proceedings of the 2020 IEEE/ACM
International Workshop on Performance, Portability and Productivity in HPC
(P3HPC), 2020. In press.

[2] S. McIntosh-Smith, J. Price, R. B. Sessions and A. A. Ibarra. ‘High performance in
silico virtual drug screening on many-core processors’. In: The International Journal
of High Performance Computing Applications 29.2 (2015), pp. 119-134.

DOI: 10.1177/ 1094342014528252.

[3] Andrei Poenaru et al. ‘An Evaluation of the Fujitsu A64FX for HPC Applications’.
Cray User Group 2021. In press.

University Of . Engineering and GV Jﬁ;
BRISTOL g W e ,

