


A Performance Analysis of
Modern Parallel Programming Models
Using a Compute-Bound Application

Andrei Poenaru

Wei-Chen Lin

Simon McIntosh-Smith



Introduction to the GW4 Isambard 2 supercomputer
• Isambard 2 is a £4.1M EPSRC project, run by a consortium of the 

GW4 Alliance, the Met Office, HPE/Cray, Fujitsu and Arm, to 
deliver a Tier-2 HPC service to researchers across the UK and 
around the world

• Funded in late 2019, Isambard 2 builds on Isambard 1’s 
achievements as the world’s first Arm64-based production 
supercomputer

• Isambard 1 has been a huge success, proving for the first time that 
Arm works for supercomputing in production environments



Isambard 2 production system

• Cray XC50 ‘Scout’ with Aries interconnect
• 21,504 ARMv8 cores (336n x 2s x 32c)
• Marvell ThunderX2 32 core @ 2.5 GHz

• HPE Apollo 80 A64FX system
• 3,456 Fujitsu A64FX cores (72n x 48c)

• Multi-Architecture Comparison System
• CXL, Rome, V100, …
• Used for previous performance portability work [1]

• Cray HPC optimised software stack
• Hosted for the Consortium by the Met Office in 

Exeter



Performance Portability
• The upcoming exascale systems together utilise combinations of 

CPUs from two vendors and GPUs from three vendors 
• It is not desirable to use platform- or vendor-specific programming models
• A portable approach is needed 

• The C++ language has particular appeal
• It can achieve performance similar to C and Fortran
• It offers modern features to write more expressive and safer code

• Parallel C++ hopes to outweigh any lost performance with 
programmer productivity



Modern Programming Models
• Two modern, single-source frameworks with a focus on 

performance, portability, and productivity have emerged:
Kokkos and SYCL
• Kokkos is a new framework developed natively for C++

• Distributed as source, builds with the host compiler

• SYCL builds on previous OpenCL toolchains and integrates them with 
modern C++

• Compilers: ComputeCpp, DPC++, hipSYCL

• Both frameworks can generate machine code for CPUs and GPUs 
without any change to the high-level source code 



The Bristol University Docking Engine (BUDE)
• BUDE is an application for in silico molecular docking
• Predicts the structures formed between molecules and

estimates the strength of their interactions [2]

• Docking is computationally challenging because of the many 
different ways in which two molecules may be arranged together
• 3 translational and 3 rotational degrees of freedom 
• Order of 107 trials

• The most computationally intensive mode is virtual screening
• Molecules of drug candidates (ligands) are generated using a genetic 

algorithm and are bonded to a target protein molecule 



miniBUDE: A Compute-Bound Mini-App
• A mini-app for BUDE virtual-screening runs 
• Kernels written in widely used parallel programming models
• Baseline implementation written in OpenCL – virtually identical to the 

core kernel of the full-scale BUDE application 
• CUDA port with minimal changes
• CPU OpenMP
• OpenMP target and OpenACC based on CPU version
• Re-implementations in Kokkos and SYCL

• Achieves >56% of peak compute performance on CXL and Rome



Evaluation Methodology
• All mainstream HPC compilers applicable to each model
• All optimisations enabled and target set explicitly, similar to
-march=native –Ofast

• Thread binding, e.g. with OMP_PROC_BIND or aprun

• Two input decks:
• Small – 26 ligands
• Large – 2672 ligands

• Warm-up + 8 iterations, 216 poses per iteration
• Iterations correspond to genetic algorithm generations



Hardware
Platform Cores Clock Speed Peak FLOP/s (32-bit)

AMD EPYC Rome 7742 2 x 64 2.25 GHz 13.8 TFLOP/s

Fujitsu A64FX 48 1.8 GHz 5.5 TFLOP/s

Intel Skylake 8176 2 x 28 2.1 GHz 5.7 TFLOP/s

Intel Cascade Lake 6230 2 x 20 2.1 GHz 4.0 TFLOP/s

Marvell ThunderX2 2 x 32 2.5 GHz 2.6 TFLOP/s

Platform Cores Clock Speed Peak FLOP/s (32-bit)

AMD Radeon VII 60 1.4 GHz 13.8 TFLOP/s

Intel Iris Pro 580 72 0.95 GHz 1.1 TFLOP/s

NVIDIA V100 80 1.13 GHz 15.7 TFLOP/s

CPUs

GPUs



Results: CPU + OpenMP

Higher numbers correspond to higher performance.

• Compiler versions are latest 
available
• Full details in the paper

• Vectorisation played a big role in 
achieving good performance

• The A64FX relies on the heavy 
optimisations from the Fujitsu 
compiler
• Including software pipelining



CPU + OpenMP Workgroup Size
Relative Performance

Lighter colours correspond to higher performance.

• Heatmap shows fractions of 
performance, normalised to best 
result on each platform

• The workgroup size influenced both 
vectorisation and loop unrolling
• Forcing unrolling and interleaving in the 

compiler helps on A64FX

• In general, the more OoO resources 
available, the higher the optimal 
workgroup size



• Strong correlation to 
baseline OpenMP results
• Indicated Kokkos uses 

OpenMP backend efficiently 
on all architectures

• Fujitsu Compiler critical for 
A64FX [3]

• Cray compiler usually fastest 
otherwise

Results: CPU + Kokkos



CUDA SYCL OpenCL • Performance normalised to best result 
on each platform

• Bars missing where models not usable
• OpenACC usable with GNU on Radeon VII, 

but only used a single thread

• No model performed best on all
platforms
• But OpenCL achieved >80% everywhere!

• Note that these are very different 
classes of devices…

Results: GPU



Results: SYCL

• SYCL 1.2.1, using sycl::nd_range
• Retains OpenCL’s copy to local memory via 

async_work_group_copy

• Alternative implementation using 
parallel_for and sycl::range
• Similar performance

• Code ran on GPUs unchanged from CPUs
• On AMD and NVIDIA GPUs, hipSYCL is the 

only usable implementation



• Heatmap shows relative performance 
on all programming models, 
normalised to the best result on each 
platform
• Lighter colours show higher performance
• Blank cells are currently impossible results

• OpenMP, Kokkos, and SYCL possible on 
all platforms
• OpenMP and Kokkos within 15% of best 

performance on CPUs
• Low-level programming faster on GPUs

Performance Portability



Summary
• Modern programming models can perform on-par with traditional ones
• Their platform support continues to grow

• True performance portability is still out of reach
• No single version of the code achieved the best performance—or at least a high 

fraction of it
• Even for a small kernel, platform-specific optimisations and empirical 

tuning accounted for more than 30% of the performance 
• Enough to differentiate the best-performing implementation

• Immature drivers and ecosystem around SYCL was an obstacle
• Kokkos was reliable and lightweight



It’s easy to apply for time on Isambard
• Please contact the Isambard PI, Prof. Simon McIntosh-Smith

simonm at cs.bris.ac.uk, who will help you determine if Isambard 
will work for you. If it will, applying for an account is quick and 
easy.

• Small amounts of pump-priming time are available for free, to try 
porting, optimizing for Arm etc. 

• Larger amounts of time for real science runs can be applied for via 
the regular EPSRC “Access to HPC” calls, or via some CCPs.

mailto:simonm@cs.bris.ac.uk


Thank you

• Reproducibility:
• miniBUDE code: https://github.com/UoB-HPC/miniBUDE
• Build and run scripts: https://github.com/UoB-HPC/performance-portability

• Bristol HPC Homepage: https://uob-hpc.github.io
• Publications: https://uob-hpc.github.io/publications
• Benchmarks: https://github.com/UoB-HPC/benchmarks

• Isambard: https://gw4-isambard.github.io/docs/index.html

https://github.com/UoB-HPC/performance-portability
https://github.com/UoB-HPC/performance-portability
https://uob-hpc.github.io/
https://uob-hpc.github.io/publications
https://github.com/UoB-HPC/benchmarks
https://gw4-isambard.github.io/docs/index.html


References
[1] T. Deakin, A. Poenaru, T. Lin, and S. McIntosh-Smith, ‘Tracking Performance 
Portability on the Yellow Brick Road to Exascale’. Proceedings of the 2020 IEEE/ACM 
International Workshop on Performance, Portability and Productivity in HPC 
(P3HPC), 2020. In press.

[2] S. McIntosh-Smith, J. Price, R. B. Sessions and A. A. Ibarra. ‘High performance in 
silico virtual drug screening on many-core processors’. In: The International Journal 
of High Performance Computing Applications 29.2 (2015), pp. 119–134.
DOI: 10.1177/ 1094342014528252.

[3] Andrei Poenaru et al. ‘An Evaluation of the Fujitsu A64FX for HPC Applications ’. 
Cray User Group 2021. In press.


