Prof Simon McIntosh-Smith

@simonmcs

Isambard PI

University of Bristol /

GW4 Alliance

Arm in HPC: From Prototype to Production

Isambard is a UK Tier 2 HPC service from GW4 and the world's first, Arm-based production supercomputer

Isambard Kingdom Brunel 1804-1859

Isambard system specification

- 10,752 Armv8 cores (168n x 2s x 32c)
 - Marvell ThunderX2 32core 2.1→2.5GHz
- Cray XC50 'Scout' form factor
- High-speed Aries interconnect
- Cray HPC optimised software stack
 - Compiler, MPI, math libraries, tools, ...
- Phase 2 (the Arm part):
 - Accepted Nov 9th 2018
 - Upgrade to final B2 TX2 silicon, firmware, CPE completed March 15th 2019
 - Production service May 28th 2019
- >230 registered users, ~80 of whom are from outside the consortium

HPE Catalyst system specification

- 4,096 Armv8 cores (64n x 2s x 32c)
 - Marvell ThunderX2 32core 2.2GHz
- HPE Apollo 70 form factor
- 100Gbps Infiniband interconnect
- Open Source software stack
 - Compilers from Arm, GNU
- Most users from Bristol today

Up to 4 servers in 2U

Isambard's core mission: enabling Arm for production HPC

Initial focus on most heavily used codes on Archer, (#1 in UK)

- VASP, CASTEP, GROMACS, CP2K, UM, HYDRA, NAMD, Oasis, SBLI, NEMO
- Note: most of these codes are written in FORTRAN

Additional important codes for project partners:

• **OpenFOAM**, **OpenIFS**, WRF, CASINO, LAMMPS, ...

RED = codes optimised at the first Isambard hackathon **BLUE** = codes optimised at the second hackathon

Processor	Cores	Clock	TDP	FP64	Bandwidth
		speed	Watts	TFLOP/s	GB/s
		GHz			
Broadwell	2×22	2.2	145	1.55	154
Skylake Gold	2 imes 20	2.4	150	3.07	256
Skylake Platinum	2×28	2.1	165	3.76	256
ThunderX2	2×32	2.1 (2.5)	175	1.28	320

BDW 22c Intel Broadwell E5-2699 v4, \$4,560 each (near top-bin)
SKL 20c Intel Skylake Gold 6148, \$3,078 each
SKL 28c Intel Skylake Platinum 8176, \$8,719 each (near top-bin)
TX2 32c Cavium ThunderX2, \$1,795 each (near top-bin)

Previously published Isambard single node performance

Comparative Benchmarking of the First Generation of HPC-Optimised Arm Processors on Isambard S. McIntosh-Smith, J. Price, T. Deakin and A. Poenaru, CUG 2018, Stockholm

GROMACS (42 million atoms, ARCHER benchmark)

Relative performance

Parallel efficiency

OpenSBLI (1024³, ARCHER benchmark)

Relative performance

Parallel efficiency

VASP (PdO, 1392 atoms)

Relative performance

Parallel efficiency

OpenFOAM (RANS DrivAer, ~64 million cells)

Relative performance

Parallel efficiency

Benchmark	Broadwell	Skylake	Isambard	Catalyst
CloverLeaf	Intel 2019	Intel 2019	CCE 9.0	Arm 19.0
TeaLeaf	Intel 2019	Intel 2019	GCC 8.3	Arm 19.0
SNAP	Intel 2019	Intel 2019	CCE 9.0	GCC 8.2
GROMACS	GCC 8.3	GCC 8.3	Arm 19.2	GCC 8.2
OpenFOAM	GCC 7.3	GCC 7.3	GCC 7.3	GCC 7.1
OpenSBLI	CCE 9.0	GCC 8.3	GCC 8.3	GCC 8.2
VASP	Intel 2019	Intel 2019	GCC 7.3	-

* Fastest when running across 32 nodes using all cores.

	CloverLeaf	- 88%	92%	100% -
Comparison of on Isambard	TeaLeaf	- 100%	91%	87% -
	SNAP	- 58%	CRASH	100% -
	GROMACS	- 96%	100%	88% -
	OpenFOAM	- 100%*	79%	BUILD -
	OpenSBLI	- 100%	91%	96% -
University of BRISTOL	VASP	- 100%*	BUILD	BUILD -
		GCC 8.3	Arm 19.2	CCE 9.0

https://github.com/UoB-HPC/benchmarks

Conclusions

- Arm-based supercomputers are now <u>in production</u>, doing real science
- Available from multiple vendors
- Solid, robust software toolchains from multiple vendors
 - Both open source and commercial
- Arm-based systems scale just as well as x86 ones
- Arm-based systems are real alternatives for HPC, reintroducing much needed <u>competition</u> to the market

For more information

Comparative Benchmarking of the First Generation of HPC-Optimised Arm Processors on Isambard S. McIntosh-Smith, J. Price, T. Deakin and A. Poenaru, CUG 2018, Stockholm

http://uob-hpc.github.io/2018/05/23/CUG18.html

Scaling Results From the First Generation of Arm-based Supercomputers S. McIntosh-Smith, J. Price, A. Poenaru and T. Deakin, CUG 2019, Montreal (Best Paper) <u>http://uob-hpc.github.io/2019/06/07/CUG19.html</u>

Bristol HPC group: Isambard: Build and run scripts: https://uob-hpc.github.io/ http://gw4.ac.uk/isambard/ https://github.com/UoB-HPC/benchmarks

