
SVE Users’ Meeting

Andrei Poenaru

University of Bristol, UK



Comparison of Vector 

Architectures
Master’s Project



Performance analysis

• Static code analysis
• NEON vs SVE vs AVX2

• TSVC – 155 loops implementing different code patterns
• Static code analysis and run time

• Benchmarks:
• STREAM
• MegaStream – UoB-developed, inspired by SNAP

• Mini-apps:
• BUDE – compute-bound
• MiniFMM – task-based parallelism, compute-bound 



Insight on generated code

• Using a combination of cachegrind, objdump and python, we can see 
how generated code varies between platforms and compilers
• Instruction counts

• Types of instructions

• Memory access patterns

• Varying the target platform and application may highlight patterns
• How do ratios of types of instructions compare? What do they say about application 

performance?

• Are there any cases that cause trouble, likely resulting in slow performance?

• Results would guide early Isambard experiments



TSVC on AVX2 (Intel 16) vs NEON and SVE (armclang 1.1)

Vectorised on Count Weaknesses

AVX2, NEON, SVE 37 —

AVX2, NEON, SVE 35 Control flow, gathers/scatters, 2d arrays

AVX2, NEON, SVE 2 Product reductions

AVX2, NEON, SVE 39 Complex reductions, scalar/array expansions, loop peeling, switch statements, 
outer loops

AVX2, NEON, SVE 42 Variable loop bounds, expansions, complex reductions

Total 155

Key: green – vectorised, red – not vectorised



SVE instruction count scaling with vector width

ratio = 
SVE instruction count
NEON instruction count



Challenges

• ARMIE 1.0 only outputs statistics about SVE instructions executed

• Can see how changing the vector width affects instructions executed…

• … but not the bigger picture

• No SVE support in third-party simulators

• Early version of the Arm HPC Compiler meant SVE likely did not 
show its full potential in the TSVC collection



Current Work



Taking Advantage of SVE in LLVM

• Goal: Investigate and implement ways to
• vectorise code that is hard to do without SVE
• reduce the cost of vectorising certain parts of code vs plain ARMv8

• Current status
• Early stages, evaluating LLVM opportunities
• Vectorisation areas investigated: speculative vectorisation, pointer-chasing loops, SLP

• Evaluation:
• Benchmarks: TSVC-like cases, mini-apps
• Simulator with SVE support, e.g. ARMIE 1.3+, Gem5



SVE Performance Evaluation

• Plan to re-evaluate ARMIE as a tool for benchmarking SVE

• What can we learn using the data provided by the newer versions?

• What extra functionality would be welcome?

• Investigate how we can analyse the performance of SVE in parallel 
applications, e.g. using OpenMP

• Arm Code Advisor

• Third-party simulator support?



GROMACS

• GROMACS is a software suite for molecular dynamics simulations with a focus on 
performance

• Widely used both as a benchmark and in production (2nd most used code on the UK 
ARCHER system)

• Kernels written in x86 vector intrinsics massively boost performance

• Planned work:

• Add SVE support to kernels

• Investigate how performance varies with different compilers and how this relates to 
their support of intrinsics



Questions


