
Comparison and analysis of parallel tasking performance for an

irregular application

Patrick Atkinson, University of Bristol (p.atkinson@bristol.ac.uk)

Simon McIntosh-Smith, University of Bristol

Intel® HPC Developer Conference 2017

Motivation

• Exploring task parallelism through a new mini-app (https://github.com/UoB-HPC/minifmm)

• Discovering limitations in OpenMP tasking model

• Optimising OpenMP implementation of algorithm through alternatives to task constructs

• Comparing performance of tasking in OpenMP runtime implementations and to other parallel

frameworks

• Determining whether using tasks can perform as well as data-parallel implementations whilst

reducing code-size

Intel® HPC Developer Conference 2017

https://github.com/UoB-HPC/minifmm)

Fast Multipole Method overview

• Used for solving N-body problems

• Reduces time complexity from O(n2) to O(n)

• Compute bound method

• Good fit for tasking for for tasking due to complex control flow – dependant on particle data

• Applications include: astrophysics, electrostatics, fluid dynamics, electromagnetics

Intel® HPC Developer Conference 2017

FMM domain decomposition

Intel® HPC Developer Conference 2017

FMM domain decomposition

Intel® HPC Developer Conference 2017

FMM domain decomposition

Intel® HPC Developer Conference 2017

FMM domain decomposition

Intel® HPC Developer Conference 2017

Method

• Each node in the tree will perform interactions with many other

nodes

• Interaction type determined by distance between nodes and

user-defined parameter

• Recurse until either:

o If two nodes are well-separated the interaction is

approximated (node to node interaction)

o The leaf level is reached and the particle interaction is

calculated directly (particle to particle interaction)

Intel® HPC Developer Conference 2017

• Each node in the tree will perform interactions with many other

nodes

• Interaction type determined by distance between nodes and

user-defined parameter

• Recurse until either:

o If two nodes are well-separated the interaction is

approximated (node to node)

o The leaf level is reached and the particle interaction is

calculated directly (particle to particle)

Method

Intel® HPC Developer Conference 2017

• Each node in the tree will perform interactions with many other

nodes

• Interaction type determined by distance between nodes and

user-defined parameter

• Recurse until either:

o If two nodes are well-separated the interaction is

approximated (node to node)

o The leaf level is reached and the particle interaction is

calculated directly (particle to particle)

Method

Intel® HPC Developer Conference 2017

Using tasks for FMM

Intel® HPC Developer Conference 2017

• We have many interactions to perform between groups of particles

• Interaction type dependant on distance between tree nodes – not

known until runtime

• Tree could be highly imbalanced

Using tasks for FMM

Intel® HPC Developer Conference 2017

• We have many interactions to perform between groups of particles

• Interaction type dependant on distance between tree nodes – not

known until runtime

• Tree could be highly imbalanced

Solution? Use tasks

• Create task for each interaction

• Letting some thread complete the required work at any time

• Need a way to enforce two threads don’t update same values…

Intuitive implementation with task dependencies

• Generate task for each interaction type

• Nodes/cells typically contain O(100) particles -

enough work to for single task

• Allows for fine-grained synchronisation with other

stages of algorithm using task dependencies

• The order tasks are generated in determines order

of execution

Intel® HPC Developer Conference 2017

Effect of enforcing unnecessary ordering

• Plotting execution of each of

the calculation functions

• Whitespace = thread idle

time

• Unnecessary ordering of

dependencies causes large

amounts of idle time

core no.

Intel® HPC Developer Conference 2017

Performance gain from removing dependencies

• Investigation – what happens if we

remove dependencies?

• Incorrect behaviour due to multiple

threads updating same nodes

• However, much better thread

utilisation…

Intel® HPC Developer Conference 2017

Effect of a single thread generating tasks – 24 core Ivybridge

Significantly less idle time than

before, however…

core no.

Intel® HPC Developer Conference 2017

Effect of a single thread generating tasks – 24 core Ivybridge

Thread generating tasks

Threads lacking tasks to execute
core no.

Intel® HPC Developer Conference 2017

Effect of a single thread generating tasks – 256 threads, KNL

Problem even worse for KNL

Thread generating tasks

core no.

Threads 0 – 204 not shown

Intel® HPC Developer Conference 2017

So two issues…

• Need an efficient way to handle race condition

-> Ensure mutual exclusion through locks or atomics

• Can’t generate all tasks from single thread

-> Need to perform tree traversal in parallel

Intel® HPC Developer Conference 2017

Locking nodes of tree

• Lock target node while updating values

• taskyield – allows programmer to specify task

can be suspended

• Combine taskyield with locks so thread

encountering task can switch to another task

• untied task – task can be resumed by any

thread

• Can combine both taskyield and untied with

locks

Intel® HPC Developer Conference 2017

Atomically updating values

• Alternatively can atomically update values instead

of locking entire node

• Four atomics per node update (task)

• Which is better locks or atomics? It depends

• On KNL atomics performed worse, on Xeon CPU

depends if we can keep lock contention low

• Can lower lock contention with less work per node

Intel® HPC Developer Conference 2017

Using different lock implementations

Intel® HPC Developer Conference 2017

• Can specify in OpenMP which lock implementation to use

• First supported in Intel OpenMP - still not present in GCC (7.2)

• Can use locks that are better for high contention and/or

speculative locks

• Default lock implementation worked best in miniFMM, all other

combinations resulted in poorer performance

Commutative dependencies

• Commutative dependency type specifies tasks can run in

any order regardless of when they were generated

• Feature in OmpSs

• Would mean entire method could be implemented using

task dependencies – allows for fine-grained

synchronisation between stages

• But we would still suffer from starvation problem with one

thread generating tasks

Intel® HPC Developer Conference 2017

Performance comparison overview

• OpenMP implementations: Intel (17.2), GCC (6.3), Cray (8.5.8), BOLT

• Programming models: OpenMP, OmpSs, CILK, TBB

• Also compared to data-parallel implementation where list of interactions are collected and then

performed in a loop over the target nodes

• Typical problem size ~O(106) particles with maximum 500 particles per node

Intel® HPC Developer Conference 2017

Hardware

Intel® HPC Developer Conference 2017

Broadwell KNL

• 2x Intel Xeon E5-2699 v4 2.20 GHz

• 2 Sockets

• 22 cores per socket

• Up to 2 threads per core

• 256-bit width vectors

• Intel Xeon Phi 7210 1.30 GHz

• 64 cores

• Up to 4 threads per core

• 512-bit width vectors

• 2x Intel Xeon Gold 6152 2.10 GHz

• 2 Sockets

• 22 cores per socket

• Up to 2 threads per core

• 512-bit width vectors

Skylake

Results – Dual socket 22-core Broadwell

• Most OpenMP implementations, CILK,

TBB, and OmpSs scale well and are close

to data-parallel algorithm

• Intel runtimes (OpenMP, CILK, TBB) and

OmpSs perform best whilst Cray and GCC

lag behind

• Can be explained by measuring time

outside of computational work, at 44 cores:

• Intel 2.01%

• GNU 8.31%

• Cray 9.13%

Intel® HPC Developer Conference 2017

Results – 64 core KNL

1 thread per core 4 threads per core

• Data-parallel code

slightly outperforms

task-parallel

implementations

• Good OmpSs

performance

required changing

scheduler to use

queue per thread

• Performance

degrades >~120

threads using GCC

Intel® HPC Developer Conference 2017

Results – Dual socket 22-core Skylake

Intel® HPC Developer Conference 2017

Summary

• Tasks can significantly reduce lines of code whilst achieving good performance

• Difficult to express parallelism in irregular methods like FMM using current

OpenMP task constructs – future changes in OpenMP could remedy this

• In the meantime alternatives to task dependencies exist

• Most programming models and implementations achieve good

scaling/performance until scaling to high thread counts

Intel® HPC Developer Conference 2017

Publications

Pragmatic Kernels, and Mini-apps including TeaLeaf, CloverLeaf, miniFMM, and SNAP

https://github.com/UK-MAC/

https://github.com/UoB-HPC/

On the performance of parallel tasking runtimes for an irregular fast multipole method application

Atkinson, Patrick and McIntosh-Smith, Simon

Assessing the performance portability of modern parallel programming models using TeaLeaf

Martineau, Matt, McIntosh-Smith, Simon, and Gaudin, Wayne

Many-core Acceleration of a Discrete Ordinates Transport Mini-app at Extreme Scale

Deakin, Tom, McIntosh-Smith, Simon N, and Gaudin, Wayne

The Productivity, Portability and Performance of OpenMP 4.5 for Scientific Applications Targeting Intel

CPUs, IBM CPUs, and NVIDIA GPUs

Martineau, Matt and McIntosh-Smith, Simon

Intel® HPC Developer Conference 2017

https://github.com/UK-MAC/
https://github.com/UoB-HPC/

Extra slides

Intel® HPC Developer Conference 2017

1 threads per core Broadwell 2 threads per core KNL

Intel® HPC Developer Conference 2017

