
Parallel Task Frameworks for FMM

Patrick Atkinson, p.atkinson@bristol.ac.uk

Prof Simon McIntosh-Smith, simonm@cs.bris.ac.uk

University of Bristol

http://uob-hpc.github.io

mailto:p.atkinson@bristol.ac.uk
mailto:simonm@cs.bris.ac.uk

See our other mini-apps for heat-diffusion, hydro, particle transport and more:
http://uob-hpc.github.io/projects/

Motivation for an FMM mini-app

• Currently there’s a wide landscape of tasking programming models

• Many differences in task interface, performance, and supported architectures

• Further, some programming models (e.g. OpenMP) have several different
implementations, with large differences in performance

• Difficult to evaluate programmability and performance in this space due to a
lack of motivating applications

• Recent addition of GPU-side tasking in Kokkos

miniFMM

• Introducing a new Fast Multipole Method mini-app: miniFMM

• Implementations:
• CPU: OpenMP, Intel TBB, CILK, Kokkos, OmpSs
• GPU: CUDA, Kokkos

• Uses the Dual Tree traversal method – the schedule of node interactions is not
known a priori, hence this is a good test case for dynamic task parallelism

• Small code base to enable testing against a wide variety of parallel programming
models

• Open source: https://github.com/UoB-HPC/minifmm

On the performance of parallel tasking runtimes for an irregular fast multipole method application
Atkinson, Patrick and McIntosh-Smith, Simon, International Workshop on OpenMP, IWOMP 2017

https://github.com/UoB-HPC/minifmm

Previous work: CPU results on Broadwell

0 4 8 12 16 20 24 28 32 36 40 44
0

5

10

15

20

25

30

35

cores

sp
ee
d
u
p

• Previously miniFMM has been used to explore
different tasking programming models on Xeon
and Xeon Phi architectures

• Most OpenMP implementations, CILK, TBB, and
OmpSs scale well

• Intel runtimes (OpenMP, CILK, TBB) and OmpSs
perform best, whilst Cray and GCC lag behind

• Can be explained by measuring time spent
within the OpenMP runtime:
• Intel 2.01%
• GNU 8.31%
• Cray 9.13%

0 10 20 30 40 50 60
0

10

20

30

40

50

60

cores

sp
ee
d
u
p

0 4 8 12 16 20 24 28 32 36 40 44
0

5

10

15

20

25

30

35

cores

s
p
e
e
d
u
p

OMP-Intel OMP-GNU OMP-Cray OmpSs

BOLT Cilk TBB Loop

Intel Xeon Broadwell 44 cores, dual-socket, 88 threads

On the performance of parallel tasking runtimes for an irregular fast multipole method application
Atkinson, Patrick and McIntosh-Smith, Simon, International Workshop on OpenMP, IWOMP 2017

Previous work: CPU results on KNL

0 10 20 30 40 50 60
0

10

20

30

40

50

60

cores

sp
ee
d
u
p

0 10 20 30 40 50 60
0

10

20

30

40

50

60

cores

sp
ee
d
u
p

• Again, Intel parallel runtimes perform well, with TBB lagging
slightly behind

• Good OmpSs performance required changing scheduler to
use one task queue per thread, instead of a global queue

• Performance degrades >~120 threads using GCC

0 4 8 12 16 20 24 28 32 36 40 44
0

5

10

15

20

25

30

35

cores

s
p
e
e
d
u
p

OMP-Intel OMP-GNU OMP-Cray OmpSs

BOLT Cilk TBB Loop

Intel Xeon Phi Knights Landing, 64 cores, up to 256 threads

On the performance of parallel tasking runtimes for an irregular fast multipole method application
Atkinson, Patrick and McIntosh-Smith, Simon, International Workshop on OpenMP, IWOMP 2017

Patrick won a “People’s Choice” award for this work at HPCDC

Patrick!

http://uob-hpc.github.io/

Features of tasks in Kokkos:

• Manually have to allocate memory pool for tasks

• Future-based task dependencies

• Unlike other programming models, Kokkos doesn’t rely on
taskwait constructs

• Instead a task may respawn itself with new task dependencies

Kokkos can now be used for dynamic task spawning on CPUs and GPUs!

New results using Kokkos

http://uob-hpc.github.io/

Features of tasks in Kokkos:

• Manually have to allocate memory pool for tasks

• Future-based task dependencies

• Unlike other programming models, Kokkos doesn’t rely on
taskwait constructs

• Instead a task may respawn itself with new task dependencies

• Typically works as follows:
1. A parent task is spawned and may spawn several tasks

New results using Kokkos

Kokkos can now be used for dynamic task spawning on CPUs and GPUs!

Features of tasks in Kokkos:

• Manually have to allocate memory pool for tasks

• Future-based task dependencies

• Unlike other programming models, Kokkos doesn’t rely on
taskwait constructs

• Instead a task may respawn itself with new task dependencies

• Typically works as follows:
1. A parent task is spawned and may spawn several tasks
2. The parent task makes a call to respawn, taking the child

task futures as arguments

New results using Kokkos

Kokkos can now be used for dynamic task spawning on CPUs and GPUs!

http://uob-hpc.github.io/

Features of tasks in Kokkos:

• Manually have to allocate memory pool for tasks

• Future-based task dependencies

• Unlike other programming models, Kokkos doesn’t rely on
taskwait constructs

• Instead a task may respawn itself with new task dependencies

• Typically works as follows:
1. A parent task is spawned and may spawn several tasks
2. The parent task makes a call to respawn, taking the child

task futures as arguments
3. The parent task will be reinserted into the task queue and

can be executed when the child tasks have completed

New results using Kokkos

Kokkos can now be used for dynamic task spawning on CPUs and GPUs!

http://uob-hpc.github.io/

Kokkos TaskSingle vs. TaskTeam

• When spawning a task, we can either spawn a TaskSingle or a TaskTeam
• A TaskSingle will execute a task on a single thread
• A TaskTeam will execute a task on a team of threads

• A team will map to:
• NVIDIA GPU: a warp
• CPU: a single thread
• Xeon Phi: the hyper-threads of a single core

http://uob-hpc.github.io/

Kokkos GPU Task Queue Implementation

• Uses a single CUDA thread-block per SM

• All warps in all thread blocks pull from a single
global task queue

• Warp lane #0 will pull tasks from the queue and,
depending on the task type, either:
• Execute a thread team task across the full

warp, or
• Execute a single thread task on lane #0,

leaving the remaining threads in the warp idle

• Hence optimal performance was only achieved
through writing warp-aware code

Warps of 2 SMs placing/acquiring tasks to/from the
global task queue

http://uob-hpc.github.io/

CUDA Shared Memory in Kokkos GPU tasks

• Shared-memory is required for good
performance in miniFMM on GPUs

• Data-parallel constructs in Kokkos allow for
shared memory for a single team

• Shared-memory support is not yet complete for
Task Policy in Kokkos

• Workaround is to declare shared memory
statically and index warp-wise

CUDA shared memory in data-parallel Kokkos

Work-around for shared memory in Kokkos task

http://uob-hpc.github.io/

Restricting Task Spawning for Improved Performance

• Kokkos maintains a single task queue – this is a similar problem to that in the GCC OpenMP
runtime w.r.t. high task queue contention

• Volta has 80 SMs and 4 warp schedulers per SM, thus 320 warps contesting for access to
the global queue simultaneously

• Similarly, KNL could have up to 256 threads contesting the global queue simultaneously

• If we stop spawning tasks after a certain tree depth, we increase the time spent executing
each task, and reduce the total number of tasks – reducing overall queue contention

• Hence we need to manually restrict task-spawning to achieve good performance

http://uob-hpc.github.io/

Restricting Task Spawning for Improved Performance cont.

• If we stop task spawning too low in the tree we
create too many tasks for the scheduler

• If we stop tasking spawning too high in the tree,
we lack parallelism

• Both CPU and GPU Kokkos runtimes are heavily
effected by this cut-off

• The Intel OpenMP runtime isn’t affected at all since:
• It maintains a task queue per thread, which

means less contention on a shared resource
• It performs task-stealing, so it can better handle

the lack of parallelism
Skylake: Intel Xeon Skylake 56 core dual-socket

http://uob-hpc.github.io/

Too many tasks

Too few tasks

Just right…

Results of miniFMM on GPUs and CPUs

miniFMM running on 107 particles • CUDA version of miniFMM finds lists of node-node
interactions on the host, then transfers to the GPU.
The GPU then iterates over interaction lists

• The Kokkos GPU tasking version is ~2.8x slower
than CUDA, whilst the Kokkos CPU version is
competitive with OpenMP

• However, Kokkos GPU tasks are new; miniFMM is
one of the first applications to make use of them

• Volta is typically 2x faster than Pascal, due to its
increased SM count and much higher shared-
memory bandwidth

http://uob-hpc.github.io/

Reasons for the Performance Difference between CUDA and Kokkos

• High register pressure: ~200 registers per thread for
Kokkos task vs. ~80 for kernels in the CUDA version

• Overhead of the tree traversal in each version is very
similar, so the overall performance difference is due to
performance of the computational kernels, not the
traversal

• Some team constructs are not yet implemented in
Kokkos, which could lead to better performance

• Kokkos only runs with 1 thread-block per SM with 128
threads per block – this could be another performance
limiting factor

http://uob-hpc.github.io/

Summary

• FMM is a great application for exploring task-parallel programming models

• Overall task performance on the CPU is mostly good for FMM, with some

problems at high thread counts

• Kokkos is increasingly important because it:

• Targets both CPU and GPU architectures with (mostly) portable code
• Supports dynamic task spawning on GPUs

• Achieves reasonable performance - if you know what you’re doing

http://uob-hpc.github.io/

Publications

Mini-apps including TeaLeaf, CloverLeaf, miniFMM, and SNAP:

http://uob-hpc.github.io/

On the performance of parallel tasking runtimes for an irregular fast multipole method application
Atkinson, Patrick and McIntosh-Smith, Simon, International Workshop on OpenMP, 2017

Assessing the performance portability of modern parallel programming models using TeaLeaf
Martineau, Matt, McIntosh-Smith, Simon, and Gaudin, Wayne, Concurrency and Computation: Practice and
Experience, 2017

Many-core Acceleration of a Discrete Ordinates Transport Mini-app at Extreme Scale
Deakin, Tom, McIntosh-Smith, Simon N, and Gaudin, Wayne, ISC High Performance, 2016

The Productivity, Portability and Performance of OpenMP 4.5 for Scientific Applications Targeting Intel
CPUs, IBM CPUs, and NVIDIA GPUs
Martineau, Matt and McIntosh-Smith, Simon, International Workshop on OpenMP, 2017

http://uob-hpc.github.io/

http://uob-hpc.github.io/

Extra slides

Differences Between CPU and GPU Implementations

• Structure of the tree traversal code can be
identical if using TaskTeams

• Computational code might have to be written
specific to architecture – e.g. if using shared
memory on GPUs etc.

• Here, P2P and M2L kernels are written to
utilise up to 32 threads, in the case we’re
executing on a GPU

Kokkos Memory Pool
• In contrast to other programming models, Kokkos

requires user to manually allocate memory for tasks
through the Kokkos memory pool class

• A memory pool is created by the programmer and
associated with an instance of a task scheduler

• When task_spawn is called, the task’s closure will be
allocated from the memory pool

• If the allocations fails, due to exceeding memory-pool
size, we will need to restart the computation

• This can be particularly problematic on GPUs as the
host will need to expand the memory pool and restart
the computation – this cannot be done on the device

