
Modelling Advanced Arm-based 
CPUs with SimEng

Prof Simon McIntosh-Smith
University of Bristol
@simonmcs

http://uob-hpc.github.io

SimEng developers: Jack Jones, Andrei Poenaru, Harry Waugh, Ainsley Rutterford, Hal Jones, James Price
Funding: EPSRC ASiMoV project (Advanced Simulation and Modelling of Virtual systems) EP/S005072/1,

Arm via a Centre of Excellence in HPC at University of Bristol



SimEng design goals
Primary goals:
• Fast – millions of OoO instructions per second on a single core
• Accurate – typically within ~10% of real hardware
• Easy to modify – days for a radically different processor model

Secondary goals:
• Use existing frameworks where possible
• CAPSTONE for instruction decode, SST for memory hierarchy / multicore
• Gem5-compatible tracing, checkpointing, …

http://uob-hpc.github.io
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Reservation stations, EUs, and cache 
hierarchy based off HC30 A64FX slides

RS sizes derived from, and ROB size and load 
buffer size extrapolated from SPARC64 X

Physical register file sizes estimated

Unclear factors
PRX only available to RSE0?

Store Data:
HC30 diagram shows connections from EAGx, EXA, 
FLA, PRX to fetch port.
• EAGx only used for addressing, and not store data?
• EXA responsible for GP store data?
• FLA responsible for vector store data?
• PRX responsible for predicate store data?
• SVE scatter/gather uses vector registers for address 

generation; perhaps FLA serves as a vector AGU?

Power management slides show ability to disable 
RSE1; would make sense for asymmetric capabilities 
(PRX, store data) to be available to RSE0 only. Data bus; writes results to ROB, registers, reservation stations
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Models of Ares, Zeus, …



Current status and WIP
• Targeting Armv8.4+SVE. Using CAPSTONE, which also supports x86, RISC-V, POWER, …

• SimEng now supports ~480 instructions, ~10% of the ISA
• Includes sophisticated branch predictors (A64FX-style)
• Partial SVE support to match A64FX

• Can vary SVE widths and number of units

• Single-core only (for now)
• Support for syscall emulation:

• Enough to handle libc startup routines in real binaries (compiled from C)
• Basic printf support
• File I/O works
• malloc works for most cases, but not yet complete

• Integrating with SST:
• SimEng models up to the load/store units, will use SST’s models for the

memory hierarchy (SimEng includes its own infinite L1 cache model)
• Prototype demonstrated in the summer

• Will also use SST to enable multi-core simulations

http://uob-hpc.github.io

SVE Enablement (Arm/Marvel)

• SVE work is underway
• Using ArmIE (fast emulation) and RIKEN GEM5 Simulator
• GCC and Arm toolchains

• Collaboration with RIKEN
• Visited Sandia (participants from NNSA Labs, RIKEN)
• Discussion of performance and simulation techniques
• Deep-dive on SVE (GEM5)

• Short term plan
• Use of SVE intrinsics for Kokkos-Kernels SIMD C++/data 

parallel types
• Underpins number of key performance routines for 

Trilinos libraries
• Seen large (6X) speedups for AVX512 on KNL and Skylake
• Expect to see similar gains for SVE vector units

• Critical performance enablement for Sandia production 
codes



Results
• Running McCalpin’s STREAM benchmark

• Run a problem small enough to fit in L1D cache
• Using an out-of-order/superscalar core model, parameterized for ThunderX2 and A64FX
• The STREAM run takes ~10ms on a real ThunderX2 core and ~13ms on a real A64FX core 

• SimEng running on an Intel Xeon Processor E5-2603 v4 @ 1.7 GHz
• ThunderX2 model

• OoO takes ~94 seconds à 221 kHz / 0.50 MIPS
• Cycle count error is 5.3% versus real ThunderX2 hardware

• A64FX model
• OoO takes ~96 seconds à 186 kHz / 0.39 MIPS
• Cycle count error is 7.4% versus real A64FX hardware

• gem5 built from Arm’s sve/beta1 branch, on same Intel CPU, ThunderX2 model only
• OoO takes ~280 seconds à 63 kHz / 0.14 MIPS (SimEng 3.5X / 3.6X)
• Cycle count error is 12.4% versus real ThunderX2 hardware

http://uob-hpc.github.io



Key statistics about the project
• ~20,000 lines of simple, modern C++17 
• ~7,500 lines are specific for Armv8+SVE support 
• An additional ~10,000 lines of test code across ~350 tests 
• Can build with GCC 7 (or later), Clang (7 or 5), or Armclang 20. Intel 19 soon 

too.

• Includes a full Continuous Integration (CI) workflow
• CircleCIàJenkins, Googletest

• Supported host platforms include: Ubuntu, CentOS and macOS

• Will be released under a permissive LLVM-style Apache 2.0 license
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f - fetch
d - decode
n - rename
p - dispatch
i - issue
c - complete
r – retire
= - flushing



Things coming in 2021
• Support for accelerators, e.g. SME (in progress)
• More comprehensive libc support (in progress)
• Ares and Zeus models (in progress)
• Instruction fusing and micro-oping
• SST integration for the memory model and multi-core
• Other ISAs (via Capstone), e.g. RISC-V
• Integration with gem5? (Drop-in replacement for their OoO)
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