
Modelling Advanced Arm-based 
CPUs with SimEng

Prof Simon McIntosh-Smith
University of Bristol
@simonmcs

http://uob-hpc.github.io

SimEng developers: Jack Jones, Andrei Poenaru, Harry Waugh, Ainsley Rutterford, Hal Jones, James Price
Funding: EPSRC ASiMoV project (Advanced Simulation and Modelling of Virtual systems) EP/S005072/1,

Arm via a Centre of Excellence in HPC at University of Bristol



SimEng design goals
Primary goals:
• Fast – millions of OoO instructions per second on a single core
• Accurate – typically within ~10% of real hardware
• Easy to modify – days for a radically different processor model

Secondary goals:
• Use existing frameworks where possible
• CAPSTONE for instruction decode, SST for memory hierarchy / multicore
• Gem5-compatible tracing, checkpointing, …

http://uob-hpc.github.io



AGU

Int ALU

AGU

Int ALU

Int ALU

Int Mul/Div

Store Data

Pred

FP/SIMD

FP/SIMD

Int ALU

Int Mul/Div

Branch

RSA
24 entry

EAGA/EXC

EAGB/EXD

EXA

PRX

FLA

FLB

EXB

Load Buffer
64 entries

Rename

128x SIMD 
registers
(512-bit)

128x GP 
registers
(64-bit)

64kB L1D$
4-way

4 uops/cycle 128B/cycle

64B/cycle

PC register

128x NZCV 
registers

(4-bit)

8MB L2$
16-way

16x MSHR

3 cycle latency

7 cycle latency
(10 cycles total)

Decode

192-entry 
ROB
(CSE)

Retires 4 
ops/cycle

4 uops/cycle

Fetch

8 insns/cycle32B/cycle
From memory

Branch 
Predictor

Sources:
Reservation stations, EUs, and cache 
hierarchy based off HC30 A64FX slides

RS sizes derived from, and ROB size and load 
buffer size extrapolated from SPARC64 X

Physical register file sizes estimated

Unclear factors
PRX only available to RSE0?

Store Data:
HC30 diagram shows connections from EAGx, EXA, 
FLA, PRX to fetch port.
• EAGx only used for addressing, and not store data?
• EXA responsible for GP store data?
• FLA responsible for vector store data?
• PRX responsible for predicate store data?
• SVE scatter/gather uses vector registers for address 

generation; perhaps FLA serves as a vector AGU?

Power management slides show ability to disable 
RSE1; would make sense for asymmetric capabilities 
(PRX, store data) to be available to RSE0 only. Data bus; writes results to ROB, registers, reservation stations

Issue on all ports
each cycle

RSE0
24 entry

RSE1
24 entry

RSBR
24 entry

ThunderX2 model A64FX model

SimEng generic CPU model

http://uob-hpc.github.io

Models of Ares, Zeus, …



Current status and WIP
• Targeting Armv8.4+SVE. Using CAPSTONE, which also supports x86, RISC-V, POWER, …

• SimEng now supports ~480 instructions, ~10% of the ISA
• Includes sophisticated branch predictors (A64FX-style)
• Partial SVE support to match A64FX

• Can vary SVE widths and number of units

• Single-core only (for now)
• Support for syscall emulation:

• Enough to handle libc startup routines in real binaries (compiled from C)
• Basic printf support
• File I/O works
• malloc works for most cases, but not yet complete

• Integrating with SST:
• SimEng models up to the load/store units, will use SST’s models for the

memory hierarchy (SimEng includes its own infinite L1 cache model)
• Prototype demonstrated in the summer

• Will also use SST to enable multi-core simulations

http://uob-hpc.github.io

SVE Enablement (Arm/Marvel)

• SVE work is underway
• Using ArmIE (fast emulation) and RIKEN GEM5 Simulator
• GCC and Arm toolchains

• Collaboration with RIKEN
• Visited Sandia (participants from NNSA Labs, RIKEN)
• Discussion of performance and simulation techniques
• Deep-dive on SVE (GEM5)

• Short term plan
• Use of SVE intrinsics for Kokkos-Kernels SIMD C++/data 

parallel types
• Underpins number of key performance routines for 

Trilinos libraries
• Seen large (6X) speedups for AVX512 on KNL and Skylake
• Expect to see similar gains for SVE vector units

• Critical performance enablement for Sandia production 
codes



Results
• Running McCalpin’s STREAM benchmark

• Run a problem small enough to fit in L1D cache
• Using an out-of-order/superscalar core model, parameterized for ThunderX2 and A64FX
• The STREAM run takes ~10ms on a real ThunderX2 core and ~13ms on a real A64FX core 

• SimEng running on an Intel Xeon Processor E5-2603 v4 @ 1.7 GHz
• ThunderX2 model

• OoO takes ~94 seconds à 221 kHz / 0.50 MIPS
• Cycle count error is 5.3% versus real ThunderX2 hardware

• A64FX model
• OoO takes ~96 seconds à 186 kHz / 0.39 MIPS
• Cycle count error is 7.4% versus real A64FX hardware

• gem5 built from Arm’s sve/beta1 branch, on same Intel CPU, ThunderX2 model only
• OoO takes ~280 seconds à 63 kHz / 0.14 MIPS (SimEng 3.5X / 3.6X)
• Cycle count error is 12.4% versus real ThunderX2 hardware

http://uob-hpc.github.io



Key statistics about the project
• ~20,000 lines of simple, modern C++17 
• ~7,500 lines are specific for Armv8+SVE support 
• An additional ~10,000 lines of test code across ~350 tests 
• Can build with GCC 7 (or later), Clang (7 or 5), or Armclang 20. Intel 19 soon 

too.

• Includes a full Continuous Integration (CI) workflow
• CircleCIàJenkins, Googletest

• Supported host platforms include: Ubuntu, CentOS and macOS

• Will be released under a permissive LLVM-style Apache 2.0 license

http://uob-hpc.github.io



f - fetch
d - decode
n - rename
p - dispatch
i - issue
c - complete
r – retire
= - flushing



Things coming in 2021
• Support for accelerators, e.g. SME (in progress)
• More comprehensive libc support (in progress)
• Ares and Zeus models (in progress)
• Instruction fusing and micro-oping
• SST integration for the memory model and multi-core
• Other ISAs (via Capstone), e.g. RISC-V
• Integration with gem5? (Drop-in replacement for their OoO)

http://uob-hpc.github.io


