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Some history
• Started my career at Inmos in Bristol in 1994

• Transputers, Occam, …
• Worked as an architect on “Chameleon” designing a SIMD 

instruction set for a dual-core, 64-bit, dual-issue, out-of-order CPU
• Very advanced workflow for the time

• A single ‘master’ instruction set database drove everything
• Documentation
• Simulator
• Compiler / assembler
• Test  / verification / …
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Early design space exploration
• The electronic spec-led workflow enabled rapid CPU design space 

exploration
• We could change most parameters about the architecture and 

microarchitecture, and regenerate everything quickly to try 
rigorous experiments
• From the ISA to the number and spec of execution units etc.
• Size and structure of reservation stations, memory hierarchy, …

• I rejoined academia in 2009 and wanted to try these kinds of 
experiments – this wasn’t as straightforward as I expected…
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Motivation – designing gas turbines ‘in silico’

http://uob-hpc.github.io

ASiMoV 5-year project with Rolls-Royce
Aiming to design new gas turbines completely in simulation
Many different kinds of physics need to be modelled simultaneously

Electromagnetic

Thermo-mechanical

Combustion

Computational Fluid Dynamics

Contact and Friction

1 Trillion degrees of freedom
A commercial Exascale problem



So what do we want to be able to do for ASiMoV?
Explore the design of an “optimal” processor for 5–10 years' time?

• Core level
• OoO parameters, number and width of vector units, prefetch capability…

• Co-processor level
• Accelerators for vector–matrix math, FFTs, …

• Memory hierarchy level
• Network level
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To address these questions…
… we need a fast, easy to modify, accurate-enough simulator to support 
semi-automated design space exploration.

In theory, we could do this with gem5 or a number of other simulators

But we found they didn’t have the specific combination of speed and 
accuracy to let us do the things we needed.

The “Simulation Engine” was born to investigate these issues…
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SimEng design goals
Primary goals:
• Fast – millions of OoO instructions per second on a single core
• Accurate – within 10–20% of hardware
• Easy to modify – days for a radically different processor model

Secondary goals:
• Use existing frameworks where possible

• CAPSTONE for instruction decode, SST for memory hierarchy / multicore
• Gem5-compatible tracing, checkpointing, …
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An early 
prototype 
targeted 

ThunderX2

The ThunderX2 simulation
was within 5-10% of the real

hardware in Isambard



A later version 
targeted 
Fujitsu’s 

upcoming 
A64fx
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Unclear factors
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Store Data:
HC30 diagram shows connections from EAGx, EXA, 
FLA, PRX to fetch port.
• EAGx only used for addressing, and not store data?
• EXA responsible for GP store data?
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SimEng top-
level design



Current status (10 months in)
• Targeting Armv8.1 initially, using CAPSTONE, which also supports x86, RISC-V, 

POWER, …
• Currently supports 230+ instructions, ~10% of the ISA

• Basic syscall emulation
• Enough to handle libc startup routines in real binaries (compiled from C)
• Basic printf support
• malloc and file I/O in progress

• Current limitations:
• Requires static binaries
• Models up to the load/store units, planning to plug in existing models for the memory 

hierarchy (SimEng includes its own infinite L1 cache model)
• Single-core only
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Early experiments
• Running McCalpin’s STREAM benchmark

• Run a problem small enough to fit in L1D cache
• Using an out-of-order/superscalar core model, parameterized for ThunderX2
• The STREAM run takes ~10ms on a real ThunderX2 core

• SimEng running on an AMD Ryzen 7 2700 @ 4.0 GHz
• OoO takes ~26 seconds à 738 kHz / 1.84 MIPS
• Atomic mode runs at around 6.4 MIPS
• Cycle count error is 3.7% versus real ThunderX2 hardware

• gem5.fast (built from Arm’s sve/beta1 branch, same AMD host CPU)
• OoO takes ~105 seconds à 171 kHz / 0.45 MIPS (SimEng 4.3X / 4.1X)
• Atomic mode runs at around 2.4 MIPS (SimEng ~2.7X)
• Cycle count error is 9.1% versus real ThunderX2 hardware



Stats about the project
• ~10,000 lines of simple, modern C++

• ~3,000 lines are specific for Armv8 support
• Another ~5,000 lines of test code across nearly 200 tests

• Includes a full Continuous Integration (CI) workflow
• CircleCI, Googletest

• Supported host platforms include: Ubuntu, CentOS and macOS

• Will be released under a permissive LLVM-style license
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Near-term plans
• Continue building up instruction support

• Will start trying different compilers and Fortran codes to help with this
• Tune model accuracy for a wider range of kernels
• Add SVE support (Arm’s new length-agnostic vector instruction set)
• A64fx model (needs some additional work in pipeline)
• Plugin interface to enable extensibility

• Prototype tracing functionality already implemented
• Aiming to share with select partners in coming weeks

• Currently asking for some simple kernels so that we can add instruction support and 
check correctness

• Aiming for initial open-source release in 3–6 months
• Considering integration with SST to enable multi-core simulation

SVE Enablement (Arm/Marvel)

• SVE work is underway
• Using ArmIE (fast emulation) and RIKEN GEM5 Simulator
• GCC and Arm toolchains

• Collaboration with RIKEN
• Visited Sandia (participants from NNSA Labs, RIKEN)
• Discussion of performance and simulation techniques
• Deep-dive on SVE (GEM5)

• Short term plan
• Use of SVE intrinsics for Kokkos-Kernels SIMD C++/data 

parallel types
• Underpins number of key performance routines for 

Trilinos libraries
• Seen large (6X) speedups for AVX512 on KNL and Skylake
• Expect to see similar gains for SVE vector units

• Critical performance enablement for Sandia production 
codes



To go back to the Inmos introduction…
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Trace simulator from
1996. Written in Tcl/Tk



f - fetch
d - decode
n - rename
p - dispatch
i - issue
c - complete
r – retire
= - flushing
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Conclusions
• Using SimEng to explore how fast we can make a 

microarchitecture level simulator
• Hope to provide useful input for the RE-gem5 project

• Also exploring how easy we can make it to make major changes to 
a microarchitecture to enable rapid design space exploration

• Early experiments suggest >4X speedup over gem5 is possible for 
a single core OoO model of ThunderX2

• We now have a fast, fairly accurate, stand-alone, single-core 
model in O(10,000) lines of code – what else is this useful for?
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