
Leveraging Arm’s Scalable Matrix Extension to
Accelerate Matrix Multiplication Kernels
Finn Wilkinson, Jack Jones, Rahat Muneeb, Simon McIntosh-Smith

Introduction & Background

With the ever-growing interest in AI, Machine Learning, and Deep Learning, new acceleration techniques are being devised to leverage performance. One such technique is the use of matrix engines within CPUs to try
and bridge the gap between CPU and GPU performance. Whilst GPUs typically dominate these kinds of workloads due to their inherent SIMD nature, they can come at a cost, namely power and data-offload
overheads. As such, having matrix engines close to, or inside of, the CPU itself can provide additional performance whilst reducing these overheads. Currently, some recent CPU offerings from Intel, Apple, and IBM
all have their own versions of a matrix engine, each implemented slightly differently but achieving the same goal of improved matrix multiplication performance. Although no hardware is currently available, Arm have
also specified their own CPU matrix ISA extension, called the Scalable Matrix Extension (SME). Building from their Scalable Vector Extension (SVE), SME introduces new outer-product instructions and a 2-D matrix
register to accelerate level 3 BLAS operations. A more recent version of the extension, SME2, adds support for inner-product and multi-vector instructions to support the acceleration of level 2 BLAS operations.

Due to the lack of available hardware, we utilise The Simulation Engine (SimEng) from the University of Bristol’s High Performance Computing Group, along with the Structural Simulation Toolkit (SST) from Sandia
National Laboratories [3] to simulate a hypothetical core design with an integrated SME matrix engine. This enables us to build on previous work from Wilkinson et al[4], which compared the performance of SVE and
SME SGEMM. By widening the scope to SGEMM and DGEMM, we are able to more comprehensively evaluate the advantages that SME has compared to like-for-like NEON (a 128-bit SIMD extension) and SVE
implementations, and how this may translate to performance gains in real workloads.

Simulation Configuration & Validation

Figure 1: A64FX Core Model with added SME Accelerator

For this study, we use SimEng v0.9.4, providing us with two important
new additions over previous versions: SME instruction support and
SST integration. Whilst SimEng provides a framework to simulate
cycle-accurate core models, SST provides a comprehensive way to
simulate a complex memory hierarchy. For our experiments, we
incorporated SimEng into SST as a distinct SST-Element called
sstsimeng. This integration allows SimEng to drive the simulation of a
core model, whilst the memory hierarchy simulation is handled by the
memHierarchy module from SST-Elements.

As the basis of our hypothetical core with SME support, we chose
Fujitsu’s A64FX due to its implementation of SVE-512, extensive
documentation (enabling a more accurate configuration), and our
on-going work with RIKEN towards FugakuNext. Figure 1 depicts the
A64FX core with the additional SME matrix engine; configured as a
single non-blocking execution unit, additional to the existing pipeline,
and its own reservation station. Given that SME loads and stores are
similar to their SVE counterparts, they share the existing EAGA and
EAGB units in the A64FX pipeline. All SME instruction latencies have
also been configured to match their SVE counterparts.

Given our target workloads are built for a bare-metal target, we are
not able to run these on in-production hardware. Hence, we instead
use similar kernels in ArmPL’s implementations of SGEMM and
DGEMM to validate our simulation accuracy. Seen in Table 1, our
accuracy is generally good, with cycle counts mostly within 15% of
hardware. However, to achieve this some minor alterations to the
memory configuration were required, namely reducing L2 access
latency and increasing L1-L2 cache bandwidths. The former has been
configured to match the L2 access latency of RIKEN’s PostK Gem5
model[2], and the latter to match the A64FX’s Core Memory Group
total bandwidth limits[1]. These changes were made in order to
improve the simulation accuracy for this study, but future releases of
SimEng will look to improve the accuracy to hardware as a whole.

GEMM M=N=K Iterations SimEng Cycles A64FX Cycles % Difference

SGEMM 64 100 1,992,536 1,854,970 +7.2%
SGEMM 256 100 99,729,016 86,355,036 +14.4%
SGEMM 1024 10 611,936,990 541,571,286 +12.2%
DGEMM 64 100 3,514,885 3,714,395 -5.5%
DGEMM 256 100 199,697,264 162,705,575 +20.4%
DGEMM 1024 10 1,292,974,554 1,209,144,243 +6.7%

Table 1: Cycle comparisons of SimEng to Hardware for n iterations of
the given ArmPL GEMM computation

Target Workloads

To compare SME against Arm’s NEON and SVE instruction sets,
we look to a workload that can be computed by both vector and
matrix instruction sets. Given we place this study in the domain
of high-performance computing, we assume that the use of the
SVE and NEON instruction sets is fine-tuned to extract the best
performance from the underlying hardware. To match these
assumptions, we ensure the chosen workload is moderately
optimised. The workloads under simulation are GEMM operations
as defined in the level 3 BLAS routines, namely,

C := α ∗ A ∗ B + β ∗ C
with A, B , and C being matrices, and α and β being scalars kept
as 1 and 0 respectively for simplicity. GEMM kernels suit our
aforementioned workload characteristics well, offering a
well-defined problem whose computations can be carried out
efficiently with both vector and matrix instructions. The
workloads used in this study were provided by Arm Ltd. and
contain optimised NEON, SVE and SME implementations of
SGEMM and DGEMM kernels. Each kernel computes the sum of
outer products

C = AB =
K∑
i=0

aibi
T

where ai is column i of A, and bi is row i of B . Matrix A is
assumed to be pre-transposed for simplicity. Within the workload,
the main GEMM computation is looped over 100 or 1,000 times,
depending on problem size, to ensure caches have ample time to
warm up and to amortise the overhead of any non-kernel code.

Matrix dimensions of 32, 64, and 128 (with M = K = N) were
chosen for this study to allow for the identification of any notable
performance impacts varying problem sizes may incur. We also
target both SGEMM and DGEMM variants of the GEMM
computation to broaden the scope of instructions in use, and to
help identify any performance characteristics the data type may
invoke.

Acknowledgements

This work has been funded by the UKRI ASiMoV project
(EP/S005072/1), and supported by Arm Ltd. via an EPSRC
iCASE.

References
[1] Fujitsu Limited.

A64fx microarchitecture manual: 9. cache architecture.
pages 63-66, 30th Nov. 2022.

[2] RIKEN RCCS.
O3 postk.py.
https://github.com/RIKEN-RCCS/riken_simulator/blob\/riken/configs/common/cores/arm/O3_

PostK.py.
Accessed 24th July 2023.

[3] A. F. Rodrigues, K. S. Hemmert, B. W. Barrett, C. Kersey, R. Oldfield, M. Weston, R. Risen, J. Cook,
P. Rosenfeld, E. Cooper-Balis, and B. Jacob.
The structural simulation toolkit.
SIGMETRICS Perform. Eval. Rev., 38(4):37–42, March 2011.

[4] Finn Wilkinson and Simon McIntosh-Smith.
An initial evaluation of arm’s scalable matrix extension.
In 2022 IEEE/ACM International Workshop on Performance Modeling, Benchmarking and Simulation of High
Performance Computer Systems (PMBS), pages 135–140, 2022.

SVE vs. SME: Vector Length Comparison

By comparing the cycle counts of SVE to SME, we are able to assess
how SME’s performance advantage over SVE grows as the vector
length widens. For all results below, the SVE Vector Length (VL)
matched SME’s Streaming Vector Length (SVL).

Figure 2: Performance comparison of SME vs SVE based on normalised
cycles counts for smaller input sizes, lower is better

From Figure 2 and Figure 3 we can see that SME always provides a
cycle advantage. With SME’s compute throughput per outer-product
instruction calculated as SVL

32 vectors for SGEMM and SVL
64 vectors for

DGEMM, doubling the SVL will also double any theoretical peak
compute SME has over SVE. However, we observe a diminishing
trend in the rate of speed-up SME has over SVE as the VL increases.
The larger problem size of 128 showcases an improvement in the
continual performance gains over SVE up until a VL of 1024-bits.

Figure 3: Performance comparison of SME vs SVE based on normalised
cycles counts for the largest input size, lower is better

Within the simulated workloads, utilised SME instructions require
SVE instructions to handle memory accesses. As the VL increases,
the SME instructions carry out four times the amount of work
whereas the SVE memory operations are only capable of a two times
increase. In this scenario, SME’s reliance on SVE limits its speed-up
factor to be sub-peak. This limitation worsens with the increase in
VL as the ratio of SVE to SME instructions increases. In Figure 3, we
find the plateau in performance gains over SVE to be more aggressive
at higher VLs. We attribute this to the comparably significant use of
the L2 cache, coupled with a sub-optimal prefetcher; meaning data
required to feed SME’s compute instructions takes longer to arrive at
the core and subsequently impacts their throughput.

NEON vs. SVE vs. SME

Here, we compare SME-128 to SVE-128 and NEON. In A64FX,
with two FPUs, SVE and NEON can produce two result vectors
per cycle. With one SME-128 unit, we can produce the
equivalent of 4 vectors per cycle for SGEMM or 2 for DGEMM.
Hence, we expect SME-128 to have a 2x advantage for SGEMM,
and be approximately equivalent for DGEMM. However, from
Figure 4 this clearly is not the case. For input sizes 32 and 64,
with both SGEMM and DGEMM, our A64FX SME-128 model
consistently boasts more than a 2x speed-up over NEON but
never achieves a 2x speed-up over SVE-128. SME’s performance
then begins to drop as the problem size grows beyond L1D cache
due to a sub-optimal prefetcher used in our simulation.

Figure 4: Performance comparison of NEON vs SVE vs SME based
on normalised cycles counts, lower is better

Analysing A64FX’s capacity to process the indexed FMLAs used
in the NEON and SVE kernels shows NEON can achieve 0.5 IPC
and SVE 1 IPC. Therefore, SME-128 should have a peak SGEMM
speed-up of 8x over NEON and 4x over SVE. Hence, SME-128 is
achieving roughly 50% of peak performance in our hypothetical
model. This delta is due to A64FX’s long vector compute and
load latencies of 9 and 11 cycles respectively; leading to large
pipeline bubbles as SME’s outer-product instructions hold onto
the limited physical registers available. For DGEMM SME-128,
we expect to achieve half of SGEMM performance, but, with
there being double the number of architectural ZA sub-tiles
available in double-precision, we get fewer bubbles and hence
better ILP; amortising the compute difference and achieving over
80% of peak performance in the 32 and 64 input sizes.

Future Work

Given the limitations A64FX’s long vector pipelines imposed on
the hypothetical SME implementation, conducting a further study
evaluating what out-of-order resources would need to be scaled-up
to achieve adequate performance, and comparing this to an SME
implementation in a less specialised core such as Graviton3,
would allow us to infer the micro-architectural features required
to support an effective SME implementation. We also aim to
evaluate SME2, which provides means to accelerate level 2 BLAS
operations such as GEMV, and some of the other matrix engines
on the market from vendors such as Intel, Apple, and IBM.

SimEng - The Simulation Engine Framework https://uob-hpc.github.io/SimEng

https://github.com/RIKEN-RCCS/riken_simulator/blob\/riken/configs/common/cores/arm/O3_PostK.py
https://github.com/RIKEN-RCCS/riken_simulator/blob\/riken/configs/common/cores/arm/O3_PostK.py
https://uob-hpc.github.io/SimEng

