Prof Simon McIntosh-Smith Isambard PI University of Bristol / GW4 Alliance

Comparative Benchmarking of the First Generation of HPC-Optimised Arm Processors on Isambard

http://gw4.ac.uk/isambard/

Isambard system specification

- 10,000+ Armv8 cores
 - Cavium ThunderX2 32core 2.1GHz
- Cray XC50 Scout form factor
- High-speed Aries interconnect
- Full Cray HPC optimised software stack
- Technology comparison:
 - x86, Xeon Phi, Pascal GPUs
- Phase 1 installed March 2017
- Phase 2 (the Arm part) arrives July 2018
- £4.7m total project cost over 3 years

Isambard's core mission: evaluating Arm for production HPC

Starting by optimizing the top 10 most heavily used codes on Archer

- VASP, CASTEP, GROMACS, CP2K, UM, HYDRA, NAMD, Oasis, SBLI, NEMO
- Note: 8 of these 10 codes are written in FORTRAN

Additional important codes for project partners:

• **OpenFOAM**, **OpenIFS**, WRF, CASINO, LAMMPS, ...

RED = codes optimised at the first Isambard hackathon **BLUE** = codes optimised at the second hackathon

Isambard progress to date

- 8 early access (whitebox) nodes delivered mid October 2017
- We've been able to compile and run most of the hackathon codes out of the box
- Using Cray CCE, GNU and Arm Clang/Flang/LLVM toolchains
- Our systems were upgraded to B0 beta silicon in late Feb 2018
- Performance already looks very exciting
 - We released A1 single socket benchmark results at SC17
 - First dual socket B0 results released here at CUG 2018!

http://gw4.ac.uk/isambard/

Processor	Cores	Clock speed GHz	FP64 TFLOP/s	Bandwidth GB/s
Broadwell	2×22	2.2	1.55	154
Skylake (Gold)	2×20	2.4	3.07	256
Skylake (Platinum)	2×28	2.1	3.76	256
Knights Landing	64	1.3	2.66	~ 490
ThunderX2	2×32	2.2	1.13	320

BDW 22c Intel Broadwell E5-2699 v4, \$4,115 each (near top-bin)
SKL 20c Intel Skylake Gold 6148, \$3,078 each
SKL 28c Intel Skylake Platinum 8176, \$8,719 each (near top-bin)
TX2 32c Cavium ThunderX2, \$1,795 each (near top-bin)

Cavium ThunderX2, a seriously beefy CPU

- 32 cores at up to 2.5GHz
- Each core is 4-way superscalar, Out-of-Order
- 32KB L1, 256KB L2 per core
- Shared 32MB L3
- Dual 128-bit wide NEON vectors
 - Compared to Skylake's 512-bit vectors, and Broadwell's 256-bit vectors
- 8 channels of 2666MHz DDR4
 - Compared to 6 channels on Skylake, 4 channels on Broadwell
 - AMD's EPYC also has 8 channels

Performance on mini-apps

Performance on heavily used applications from Archer

Comparing performance per Dollar

- Hard to do this rigorously
 - RRP is not what anyone pays
 - Whole system cost has to be taken into account
 - Purchase price vs. TCO
- However, we can form some useful intuition
 - The following charts were generated by taking the performance results, dividing by the official published list prices of the CPUs only, then renormalizing to Broadwell

Performance per Dollar: mini-apps

Performance per Dollar: applications

Key observations

- For memory bandwidth bound codes such as OpenFOAM and SBLI, ThunderX2 has a clear performance advantage
- For compute-bound applications such as GROMACS and VASP, the wider vectors of the latest x86 CPUs win out
- For all the other codes we tried, ThunderX2 performance is comparable to Skylake
- The performance per dollar results are even more compelling for ThunderX2

Comparison of compilers on Arm

STREAM	- 100%	100%	98% -
CloverLeaf	- 96%	98%	100% -
TeaLeaf	- 100%	94%	96% -
SNAP	- 74%	90%	100% -
Neutral	- 100%	99%	87% -
	GCC 7	Arm 18.3	CCE 8.7

http://gw4.ac.uk/isambard/

Benchmark	ThunderX2	Broadwell	Skylake	Xeon Phi
STREAM	GCC 7	Intel 18	Intel 18	Intel 18
CloverLeaf	Arm 18.2	Intel 18	Intel 18	Intel 18
TeaLeaf	GCC 7	Intel 18	Intel 18	Intel 18
SNAP	CCE 8.6	Intel 18	Intel 18	Intel 18
Neutral	GCC 7	Intel 18	Intel 18	Intel 18
CP2K	GCC 7	GCC 7	GCC 7	
GROMACS	GCC 7	GCC 7	GCC 7	
NAMD	Arm 18.2	GCC 7	Intel 18	
NEMO	CCE 8.7	CCE 8.7	CCE 8.7	
OpenFOAM	GCC 7	GCC 7	GCC 7	
OpenSBLI	CCE 8.7	Intel 18	Intel 18	
UM	CCE 8.6	CCE 8.5	CCE 8.6	
VASP	CCE 8.7	CCE 8.6	CCE 8.6	

Conclusions

- Early results show ThunderX2 performance is competitive with current high-end server CPUs, while performance per dollar is compelling
- The full Isambard XC50 Arm system is due to be installed in July 2018, aiming to open for science by the end of the summer
- The signs are that Arm-based systems are now real alternatives for HPC

For more information

Comparative Benchmarking of the First Generation of HPC-Optimised Arm Processors on Isambard

S. McIntosh-Smith, J. Price, T. Deakin and A. Poenaru, CUG 2018, Stockholm

Bristol HPC group: <u>https://uob-hpc.github.io/</u>

Isambard: http://gw4.ac.uk/isambard/

Twitter: @simonmcs

