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Recent processor trends in HPC

http://uob-hpc.github.io
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Architectural trends

§ CPUs evolved to have wide 
vectors and lots of cores.

§ 32-core CPUs now common.
§ Expecting 64-core CPUs to 

arrive within next 12 months.
§ Renewed competition in CPUs 

crucial to health of HPC 
ecosystem and performance/$.

§ GPUs including latest high 
bandwidth memory technology.

§ Architectures with many-cores 
and wide vectors.

§ Cores becoming more complex, 
including caches, specialised 
accelerators, etc.

§ Increased competition from 
vendors is GPGPUs.

http://uob-hpc.github.io
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Supercomputers

§ Next generation of world-class large 
supercomputers will contain a diverse range of 
architectures.

– Frontier: AMD EPYC CPUs and Radeon GPUs
– Aurora: Intel Xeon CPUs and Xe GPUs
– Perlmutter: AMD EYPC CPUs and NVIDIA GPUs
– El Capitan: TBA
– Fugaku: Fujitsu A64FX Arm CPUs

§ We’re going to have to ensure our codes run on 
diverse systems.

http://uob-hpc.github.io
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Structured transport on GPUs
§ Our earlier work [1-3] focused on performance limiting factors on many-core for finite 

difference, structured grid, deterministic Sn transport on GPUs.
§ Developed a parallel scheme to best exploit the high memory bandwidth available on 

GPUs.
– Originally written for NVIDIA K20X Kepler GPUs, but shown to be effective on P100 Pascal and V100 

Volta GPUs.

§ Needed to utilise concurrency in angles within an octant, all energy groups (Jacobi 
iterations as R. Baker MC2015 paper) and cells on a wavefront in local subdomain.

– A scheme directly at odds with requirements for efficient sweeps (c.f. Adams @ TAMU/Bailey @ LLNL).

§ Using LANL’s SNAP mini-app, showed our parallel scheme is limited by GPU memory 
bandwidth, and achieved speedups over CPUs in line with this metric [1].

§ LLNL’s KRIPKE’s flux-register algorithm (MC2019) uses similar parallelism but includes 
an optimisation to reduce memory movement at expense of reduced parallelism.

– Note KRIPKE has a different spatial decomposition.

[1] T. Deakin, “Leveraging many-core technology for deterministic neutral particle transport at extreme scale,” Ph.D. thesis, University of Bristol, 2018.
[2] T. Deakin, S. McIntosh-Smith, M. Martineau, and W. Gaudin, “An improved parallelism scheme for deterministic discrete ordinates transport,” International Journal of High Performance 
Computing Applications, sep 2016.
[3] T. Deakin, S. McIntosh-Smith, and W.Gaudin, Many-Core Acceleration of a Discrete Ordinates Transport Mini-App at Extreme Scale. Cham: Springer International Publishing, 2016, pp. 
429–448. 5



Performance models for structured transport
§ Developed performance models for scaling on GPU 

systems [3].
– Modelling computation cost as grind time x amount of work 

inaccurate on GPUs.
– More accurately modelled as product of number of local 

wavefronts in local sweep (#angles/groups somewhat unrelated).

§ At high processor counts, point-to-point communication 
becomes the bottleneck.

– At 2048 GPUs, 80% of time on Titan and 60% time on Piz Daint
in communications.

– In part due to idle time in startup/teardown, but also due to 
acceleration of solve time vs message cost.

§ Results show KBA scaled well enough up to 8000 GPU.
– 1 MPI rank/GPU.
– Problem size we could test limited by K20X capacity (6 GB).
– Larger problems would scale better.

Weak scaling SNAP on Titan [1,3]

[1] T. Deakin, “Leveraging many-core technology for deterministic neutral particle transport at extreme scale,” Ph.D. thesis, University of Bristol, 2018.
[2] T. Deakin, S. McIntosh-Smith, M. Martineau, and W. Gaudin, “An improved parallelism scheme for deterministic discrete ordinates transport,” International Journal of High Performance 
Computing Applications, sep 2016.
[3] T. Deakin, S. McIntosh-Smith, and W.Gaudin, Many-Core Acceleration of a Discrete Ordinates Transport Mini-App at Extreme Scale. Cham: Springer International Publishing, 2016, pp. 
429–448. 6



Structured transport on many-core CPUs

§ Parallelism for LANL’s SNAP provides sufficient work 
for CPU cores:

– MPI KBA spatial decomposition (pipelined sweeps)
– OpenMP threads of energy groups
– Compiler automatic vectorisation over angles in octant

§ As a tool to explore performance bounds, we 
developed the mega-sweep mini-mini-app, extracting 
just the sweep kernel.

§ Computational intensity is low (low ratio of 
FLOPs/bytes), so Cache-aware Roofline model 
classifies as memory bandwidth bound.

§ But performance results don’t correlate with available 
memory bandwidth of processors.

Performance of SN Transport on Many-Core Architectures
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(a) mega-sweep results
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(b) BabelStream Triad results

Figure 1: mega-sweep and BabelStream Triad results on a range of CPU architectures, normalised to Broad-
well (higher is better)

STREAM Triad is the classic benchmark for determining available main memory bandwidth, and codes
which are main memory bandwidth bound typically align with the benchmark results [6, 8]. The results
shown in Fig. 1b show that the sweep results of Fig. 1a do not correlate with being limited by main
memory bandwidth. Indeed, processors with a high memory bandwidth do not necessarily provide fast
runtimes for the sweep. This implies that neither FLOP/s or main memory bandwidth are a significant
performance limiting factor for structured grid sweeps.

We will extend this analysis by exploring the use of hardware performance counters to identify bottlenecks
in the code. We have used this approach in collaboration with Marvell to discover long latency instructions,
and for where the hardware prefetcher is unable to correctly move memory into cache in advance of when
it is needed. As such, the performance is limited primarily by loading memory from the cache hierarchy on
multi-core CPUs. This is therefore an unusual performance characterisation as many other simulation
algorithms are instead limited by main memory bandwidth instead, and is as such an important point to
discuss within the transport community.

On GPU architectures on the other hand, additional concurrency in the algorithm must be exposed in order
to obtain good performance. The natural independence between cells on the wavefront of the sweep
provide this extra parallelism, and when combined with the concurrency in angles (within a single octant)
and energy groups, sufficient parallelism is found to saturate a GPU with work [1, 4]. This extra parallelism
leverages the latency hiding advantages of GPU architectures obtained by their ability to context switch
quickly to hide long latency memory requests with other work. As a result, device memory bandwidth
memory bandwidth becomes the performance limiting factor on GPU architectures.

3/5

https://github.com/uk-mac/mega-stream

Deakin, T., Gaudin, W., & McIntosh-Smith, S. (2017). On the Mitigation of Cache Hostile Memory Access Patterns on Many-Core CPU Architectures (pp. 348–362). Frankfurt: Springer International Publishing. 
https://doi.org/10.1007/978-3-319-67630-2_26
Tom Deakin, John Pennycook, Andrew Mallinson, Wayne Gaudin and Simon McIntosh-Smith. The MEGA-STREAM Benchmark on Intel Xeon Phi Processors (Knights Landing). The Intel Xeon Phi Users Group Spring 
Meeting, 2017.
T. Deakin, “Leveraging many-core technology for deterministic neutral particle transport at extreme scale,” Ph.D. thesis, University of Bristol, 2018.

80x8x8 cells, 48 angles/octant, 64 groups
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Core-bound, or not core-bound?

§ Follow a procedure by Voysey (Met Office) to help discover performance 
limiting factors:

1. Run on all cores of one socket. (e.g. 18 cores of one Broadwell socket)
2. Run on half of cores of both sockets. (e.g. 2 x 9 cores)

§ If performance improves, performance is bound in shared resources such 
as memory bandwidth.

– E.g. Two sockets give you twice the main memory bandwidth of one socket.
§ Otherwise, bound by on-core resources.

– Same number of cores, so have same number of FLOPs, same cache 
bandwidth/size, etc.

§ Warning! Sometimes see increase in clock speed for the two-socket run.

A. Voysey and M. Glover. “Performance of Met Office Weather and Climate Codes on Cavium ThunderX2 Processors.” (2018). URL 
https://www.youtube.com/watch?v=xSLY0RJBEAQ. Presentation at Arm Research Summit, Austin, Texas. 8



Relative performance improvement
§ On Power 9 and ThunderX2, little 

improvement from second socket.
– Bound by on-core resources (L1/L2 cache).

§ On Intel Xeons, second socket does improve 
performance.

– Bound by off-core resources.
§ But on Skylake < 2X difference, and clock 

speed increased by 10%, so…
– …unlikely to be main memory bandwidth alone:
– Non-temporal stores improve performance (~1.4X).
– ThunderX2 has more main memory bandwidth per 

socket than Xeon, but doesn’t result in faster 
runtimes here.

– Two sockets also give more L3 cache…
§ Performance of deep memory hierarchy is 

multifaceted problem.
– Currently doing further experiments to pin down 

the cache feature exactly.
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Modelling runtime with cache misses
§ Using Linux perf, we can gather performance counter data during a run of 

mega-sweep on ThunderX2.
– Collect L1 data cache misses and total number of cycles.
– Calculate an average miss latency using appropriate counters with help from 

your vendor.
Ø This is an application dependent value due to prefetching behaviour.

§ Example run, for the 4 backwards sweeps (-x):
– 106,932,262,330 cycles (107 billion cycles)
– 3,104,413,875     L1 misses (3.1 billion)
– Derived 31 cycles for a miss using vendor-known counters for this binary.

§ L1 misses * latency = 96.4 billion cycles, 90% of total cycles.
§ For forwards sweeps (with similar maths) we see 63% of total cycles.

– Prefetching is proving more accurate on forwards sweeps here.
§ Therefore, execution time (equiv. number of cycles) is pretty similar to the 

time spent waiting for cache misses to be satisfied.

Thanks to Rabin Sugumar at Marvell 10



Structured transport performance bounds

§ Performance bounds for structured transport depends on where you look!
§ At scale, becomes bound by cost (latency) of communications.
§ CPU solve bound by cache performance.

– Local spatial concurrency disrupts memory access pattern.
– Performance dictated by cache architecture supporting high reuse of 

neighbouring flux arrays and streaming of angular flux.
§ GPU solve bound by device memory bandwidth.

– Expose maximal concurrency and utilise latency tolerant properties of GPUs to 
leverage high performance.

http://uob-hpc.github.io T. Deakin, “Leveraging many-core technology for deterministic neutral particle 
transport at extreme scale,” Ph.D. thesis, University of Bristol, 2018. 11



The UnSNAP mini-app

§ Port of (structured) SNAP from Los Alamos National Laboratory.
– Use SNAP’s Sn quadrature, material data, material layout, source update 

approximations, etc.
– Maintain R. Baker’s use of Jacobi in energy groups for concurrency.

§ Unstructured mesh of 3D hexahedral DG elements.
– Allows for arbitrary order discontinuous Lagrange elements.

Ø Nodes on vertices, edges, faces and inside volume.
– Method allows for distorted and curved elements.

§ Matrix-free finite element solve.
– Basis function integration precomputed.

§ Sweep schedule computed for each angle and stored in graph.
– Fully upwind sweep schedule on each node.
– This study focuses on on-node performance of different architectures.

Ø Consider multi-node in the future leveraging existing body of research.

T. Deakin, S. McIntosh-Smith, J. Lovegrove, R. Smedley-Stevenson, and A. Hagues. “UnSNAP: a mini-app for exploring the performance of deterministic 
discrete ordinates transport on unstructured meshes.” In Cluster Computing,  IEEE International Conference on, pp. 566–574. Belfast (2018). 12



CPU parallelism

§ Each t-level in sweep schedule for angle contains list of 
elements to solve.

– Nested loop over elements in level and energy groups, 
threaded with OpenMP.

Ø Solving energy groups in element helps with memory contiguity and 
sufficient parallelism (see WRAp paper for details).

§ Small linear system assembled and solved from 
sources, cross-sections, Sn quadrature and 
precomputed integrals of basis pairs.

– Gaussian Elimination for solution. Numerically stable enough, 
and full factorization very expensive.

– SIMD vectorization of element nodes.
Ø Corresponds to vectorising rows of matrix and of the right-hand side 

vector.
13



GPU parallelism

§ Early results from CUDA implementation, linear elements showing 
promising performance.

– Full port of UnSNAP so data is resident in GPU memory.
§ Combine schedule for angles in angle set as need more concurrency for 

sufficient work on GPU.
§ Launch a kernel for each t-level in combined graph.
§ One thread block for each element, group, angle.
§ For linear elements, 64 threads/block, one thread per matrix entry.
§ This approach hits device limits for higher orders: thread over matrix rows.
§ Use atomic updates for scalar flux reduction from parallel angle.
§ Linear system assembled and solved in shared memory (manual caching).

14



Hardware

Architecture Cores Clock GHz Peak FP64 TFLOP/s Main memory 
bandwidth GB/s 

Intel Broadwell 18×2 2.1 1.21 154 

Intel Skylake 28×2 2.1 3.76       (3.1X) 256       (1.7X)

Marvell ThunderX2 32×2 2.5 1.28       (1.1X) 288       (1.9X)

IBM Power 9 20×2 3.2 1.02       (0.8X) 340.      (2.2X)

NVIDIA P100 60 SMs 1.13 4.04       (3.3X) 732       (4.8X)

NVIDIA V100 84 SMs 1.37 7.01       (5.8X) 900       (5.8X)

§ Broadwell as performance baseline.
§ Dual-socket CPUs, and one GPU accelerator.
§ Theoretical relative performance of these simple metrics shown in brackets.

15



Performance results

Broadwell Skylake ThunderX2 Power 9 P100 V100
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§ Performance normalised to Broadwell. All CPUs dual-socket, and compare to one GPU.
§ For linear elements, ThunderX2 and Skylake performance similar, around 1.4X over Broadwell.
§ 6X performance improvement over Broadwell for one V100 GPU for linear elements.
§ Skylake fastest for higher orders.
§ Improvements here don’t relate to simple FLOP/s or main memory bandwidth of processors.

512 cells, 80 angles, 32 energy groups = 1.3M TDoF
10.5M-83.9M unknowns (depending on order)
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Relative performance improvement

Broadwell Skylake ThunderX2 Power 9
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§ No CPU shows significant 
performance improvement from one to 
two sockets for any order.

§ Low arithmetic intensity as more bytes 
read for assembly and Gaussian 
elimination than number of FLOPs.

§ UnSNAP bound by on-core resources, 
i.e. not main memory bandwidth 
bound.

§ Broadwell L1 cache hit rate over 95%.
– L2 cache hit goes from 53% single 

socket to 7% two socket.
– Note: Angular flux is larger than L3 

cache for all orders.

§ Comparing improvement from 
one fully populated socket to 
two half populated sockets.
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Performance analysis

§ Relative L1 cache bandwidth between processors not the whole picture.
§ Each linear system small enough to fit in cache, so access to cache 

dictates the performance on CPU.
§ Caches designed to be transparent to applications, so analysis is difficult.

§ GPU also not limited by device memory bandwidth.
– Nvprof shows very few device memory accesses.
– Most memory requests satisfied by GPU caches rather than HBM.

Ø L2 cache had 96% hit rate.

§ Parallel angle schedule on GPU required for sufficient parallelism, 2.5X 
faster than serial angle schedule for linear elements.

– On a CPU, parallel angle schedule much slower.
18



Summary

§ Solving the transport equation is challenging!
§ Our algorithms are going to need to expose sufficient concurrency 

to work efficiently on parallel many-core architectures.
§ On CPUs, both structured and unstructured transport is limited by 

the performance of the cache.
§ On GPUs, we see different performance bounds based on the 

discretisation method:
– Structured grid/finite difference: main memory bandwidth.
– Unstructured grid/DG finite element: device cache performance.

https://uob-hpc.github.io tom.deakin@bristol.ac.uk
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