
Reviewing the Computational
Performance of Deterministic
Sn Transport Sweeps on Many-
core Architectures

Tom Deakin, Simon McIntosh-Smith (UoBristol)
Justin Lovegrove, Richard Smedley-Stevenson,
Andrew Hagues (AWE)

tom.deakin@bristol.ac.uk
UK Ministry of Defence © British Crown Owned Copyright 2019/AWE Published with
permission of the Controller of Her Britannic Majesty’s Stationery Office. This
document is of United Kingdom origin and contains proprietary information which is
the property of the Secretary of State for Defence. It is furnished in confidence and
may not be copied, used or disclosed in whole or in part without prior written
consent of Defence Intellectual Property Rights DGDCDIPR-PL - Ministry of
Defence, Abbey Wood, Bristol, BS34 8JH, England.

Recent processor trends in HPC

http://uob-hpc.github.io

GPUs/acceleratorsMany-core CPUs

2

Architectural trends

§ CPUs evolved to have wide
vectors and lots of cores.

§ 32-core CPUs now common.
§ Expecting 64-core CPUs to

arrive within next 12 months.
§ Renewed competition in CPUs

crucial to health of HPC
ecosystem and performance/$.

§ GPUs including latest high
bandwidth memory technology.

§ Architectures with many-cores
and wide vectors.

§ Cores becoming more complex,
including caches, specialised
accelerators, etc.

§ Increased competition from
vendors is GPGPUs.

http://uob-hpc.github.io
3

Supercomputers

§ Next generation of world-class large
supercomputers will contain a diverse range of
architectures.

– Frontier: AMD EPYC CPUs and Radeon GPUs
– Aurora: Intel Xeon CPUs and Xe GPUs
– Perlmutter: AMD EYPC CPUs and NVIDIA GPUs
– El Capitan: TBA
– Fugaku: Fujitsu A64FX Arm CPUs

§ We’re going to have to ensure our codes run on
diverse systems.

http://uob-hpc.github.io
4

Structured transport on GPUs
§ Our earlier work [1-3] focused on performance limiting factors on many-core for finite

difference, structured grid, deterministic Sn transport on GPUs.
§ Developed a parallel scheme to best exploit the high memory bandwidth available on

GPUs.
– Originally written for NVIDIA K20X Kepler GPUs, but shown to be effective on P100 Pascal and V100

Volta GPUs.

§ Needed to utilise concurrency in angles within an octant, all energy groups (Jacobi
iterations as R. Baker MC2015 paper) and cells on a wavefront in local subdomain.

– A scheme directly at odds with requirements for efficient sweeps (c.f. Adams @ TAMU/Bailey @ LLNL).

§ Using LANL’s SNAP mini-app, showed our parallel scheme is limited by GPU memory
bandwidth, and achieved speedups over CPUs in line with this metric [1].

§ LLNL’s KRIPKE’s flux-register algorithm (MC2019) uses similar parallelism but includes
an optimisation to reduce memory movement at expense of reduced parallelism.

– Note KRIPKE has a different spatial decomposition.

[1] T. Deakin, “Leveraging many-core technology for deterministic neutral particle transport at extreme scale,” Ph.D. thesis, University of Bristol, 2018.
[2] T. Deakin, S. McIntosh-Smith, M. Martineau, and W. Gaudin, “An improved parallelism scheme for deterministic discrete ordinates transport,” International Journal of High Performance
Computing Applications, sep 2016.
[3] T. Deakin, S. McIntosh-Smith, and W.Gaudin, Many-Core Acceleration of a Discrete Ordinates Transport Mini-App at Extreme Scale. Cham: Springer International Publishing, 2016, pp.
429–448. 5

Performance models for structured transport
§ Developed performance models for scaling on GPU

systems [3].
– Modelling computation cost as grind time x amount of work

inaccurate on GPUs.
– More accurately modelled as product of number of local

wavefronts in local sweep (#angles/groups somewhat unrelated).

§ At high processor counts, point-to-point communication
becomes the bottleneck.

– At 2048 GPUs, 80% of time on Titan and 60% time on Piz Daint
in communications.

– In part due to idle time in startup/teardown, but also due to
acceleration of solve time vs message cost.

§ Results show KBA scaled well enough up to 8000 GPU.
– 1 MPI rank/GPU.
– Problem size we could test limited by K20X capacity (6 GB).
– Larger problems would scale better.

Weak scaling SNAP on Titan [1,3]

[1] T. Deakin, “Leveraging many-core technology for deterministic neutral particle transport at extreme scale,” Ph.D. thesis, University of Bristol, 2018.
[2] T. Deakin, S. McIntosh-Smith, M. Martineau, and W. Gaudin, “An improved parallelism scheme for deterministic discrete ordinates transport,” International Journal of High Performance
Computing Applications, sep 2016.
[3] T. Deakin, S. McIntosh-Smith, and W.Gaudin, Many-Core Acceleration of a Discrete Ordinates Transport Mini-App at Extreme Scale. Cham: Springer International Publishing, 2016, pp.
429–448. 6

Structured transport on many-core CPUs

§ Parallelism for LANL’s SNAP provides sufficient work
for CPU cores:

– MPI KBA spatial decomposition (pipelined sweeps)
– OpenMP threads of energy groups
– Compiler automatic vectorisation over angles in octant

§ As a tool to explore performance bounds, we
developed the mega-sweep mini-mini-app, extracting
just the sweep kernel.

§ Computational intensity is low (low ratio of
FLOPs/bytes), so Cache-aware Roofline model
classifies as memory bandwidth bound.

§ But performance results don’t correlate with available
memory bandwidth of processors.

Performance of SN Transport on Many-Core Architectures

Broadwell
Skylake

KNL

ThunderX2
Naples

Power 9
0

0.5

1

1.5

N
or

m
al

is
ed

so
lv

e
tim

e

(a) mega-sweep results

Broadwell
Skylake

KNL

ThunderX2
Naples

Power 9
0

1

2

3

N
or

m
al

is
ed

m
em

or
y

ba
nd

w
id

th

(b) BabelStream Triad results

Figure 1: mega-sweep and BabelStream Triad results on a range of CPU architectures, normalised to Broad-
well (higher is better)

STREAM Triad is the classic benchmark for determining available main memory bandwidth, and codes
which are main memory bandwidth bound typically align with the benchmark results [6, 8]. The results
shown in Fig. 1b show that the sweep results of Fig. 1a do not correlate with being limited by main
memory bandwidth. Indeed, processors with a high memory bandwidth do not necessarily provide fast
runtimes for the sweep. This implies that neither FLOP/s or main memory bandwidth are a significant
performance limiting factor for structured grid sweeps.

We will extend this analysis by exploring the use of hardware performance counters to identify bottlenecks
in the code. We have used this approach in collaboration with Marvell to discover long latency instructions,
and for where the hardware prefetcher is unable to correctly move memory into cache in advance of when
it is needed. As such, the performance is limited primarily by loading memory from the cache hierarchy on
multi-core CPUs. This is therefore an unusual performance characterisation as many other simulation
algorithms are instead limited by main memory bandwidth instead, and is as such an important point to
discuss within the transport community.

On GPU architectures on the other hand, additional concurrency in the algorithm must be exposed in order
to obtain good performance. The natural independence between cells on the wavefront of the sweep
provide this extra parallelism, and when combined with the concurrency in angles (within a single octant)
and energy groups, sufficient parallelism is found to saturate a GPU with work [1, 4]. This extra parallelism
leverages the latency hiding advantages of GPU architectures obtained by their ability to context switch
quickly to hide long latency memory requests with other work. As a result, device memory bandwidth
memory bandwidth becomes the performance limiting factor on GPU architectures.

3/5

https://github.com/uk-mac/mega-stream

Deakin, T., Gaudin, W., & McIntosh-Smith, S. (2017). On the Mitigation of Cache Hostile Memory Access Patterns on Many-Core CPU Architectures (pp. 348–362). Frankfurt: Springer International Publishing.
https://doi.org/10.1007/978-3-319-67630-2_26
Tom Deakin, John Pennycook, Andrew Mallinson, Wayne Gaudin and Simon McIntosh-Smith. The MEGA-STREAM Benchmark on Intel Xeon Phi Processors (Knights Landing). The Intel Xeon Phi Users Group Spring
Meeting, 2017.
T. Deakin, “Leveraging many-core technology for deterministic neutral particle transport at extreme scale,” Ph.D. thesis, University of Bristol, 2018.

80x8x8 cells, 48 angles/octant, 64 groups

7

https://doi.org/10.1007/978-3-319-67630-2_26

Core-bound, or not core-bound?

§ Follow a procedure by Voysey (Met Office) to help discover performance
limiting factors:

1. Run on all cores of one socket. (e.g. 18 cores of one Broadwell socket)
2. Run on half of cores of both sockets. (e.g. 2 x 9 cores)

§ If performance improves, performance is bound in shared resources such
as memory bandwidth.

– E.g. Two sockets give you twice the main memory bandwidth of one socket.
§ Otherwise, bound by on-core resources.

– Same number of cores, so have same number of FLOPs, same cache
bandwidth/size, etc.

§ Warning! Sometimes see increase in clock speed for the two-socket run.

A. Voysey and M. Glover. “Performance of Met Office Weather and Climate Codes on Cavium ThunderX2 Processors.” (2018). URL
https://www.youtube.com/watch?v=xSLY0RJBEAQ. Presentation at Arm Research Summit, Austin, Texas. 8

Relative performance improvement
§ On Power 9 and ThunderX2, little

improvement from second socket.
– Bound by on-core resources (L1/L2 cache).

§ On Intel Xeons, second socket does improve
performance.

– Bound by off-core resources.
§ But on Skylake < 2X difference, and clock

speed increased by 10%, so…
– …unlikely to be main memory bandwidth alone:
– Non-temporal stores improve performance (~1.4X).
– ThunderX2 has more main memory bandwidth per

socket than Xeon, but doesn’t result in faster
runtimes here.

– Two sockets also give more L3 cache…
§ Performance of deep memory hierarchy is

multifaceted problem.
– Currently doing further experiments to pin down

the cache feature exactly.

9

Br
oad

we
ll

Sk
yla

ke

Th
un
der

X2

Po
we
r 9

0

0.5

1

1.5

2

S
p
ee
d
u
p
of

tw
o
so
ck
et
s
vs

on
e
so
ck
et

80x8x8 cells, 48 angles/octant, 64 groups

Modelling runtime with cache misses
§ Using Linux perf, we can gather performance counter data during a run of

mega-sweep on ThunderX2.
– Collect L1 data cache misses and total number of cycles.
– Calculate an average miss latency using appropriate counters with help from

your vendor.
Ø This is an application dependent value due to prefetching behaviour.

§ Example run, for the 4 backwards sweeps (-x):
– 106,932,262,330 cycles (107 billion cycles)
– 3,104,413,875 L1 misses (3.1 billion)
– Derived 31 cycles for a miss using vendor-known counters for this binary.

§ L1 misses * latency = 96.4 billion cycles, 90% of total cycles.
§ For forwards sweeps (with similar maths) we see 63% of total cycles.

– Prefetching is proving more accurate on forwards sweeps here.
§ Therefore, execution time (equiv. number of cycles) is pretty similar to the

time spent waiting for cache misses to be satisfied.

Thanks to Rabin Sugumar at Marvell 10

Structured transport performance bounds

§ Performance bounds for structured transport depends on where you look!
§ At scale, becomes bound by cost (latency) of communications.
§ CPU solve bound by cache performance.

– Local spatial concurrency disrupts memory access pattern.
– Performance dictated by cache architecture supporting high reuse of

neighbouring flux arrays and streaming of angular flux.
§ GPU solve bound by device memory bandwidth.

– Expose maximal concurrency and utilise latency tolerant properties of GPUs to
leverage high performance.

http://uob-hpc.github.io T. Deakin, “Leveraging many-core technology for deterministic neutral particle
transport at extreme scale,” Ph.D. thesis, University of Bristol, 2018. 11

The UnSNAP mini-app

§ Port of (structured) SNAP from Los Alamos National Laboratory.
– Use SNAP’s Sn quadrature, material data, material layout, source update

approximations, etc.
– Maintain R. Baker’s use of Jacobi in energy groups for concurrency.

§ Unstructured mesh of 3D hexahedral DG elements.
– Allows for arbitrary order discontinuous Lagrange elements.

Ø Nodes on vertices, edges, faces and inside volume.
– Method allows for distorted and curved elements.

§ Matrix-free finite element solve.
– Basis function integration precomputed.

§ Sweep schedule computed for each angle and stored in graph.
– Fully upwind sweep schedule on each node.
– This study focuses on on-node performance of different architectures.

Ø Consider multi-node in the future leveraging existing body of research.

T. Deakin, S. McIntosh-Smith, J. Lovegrove, R. Smedley-Stevenson, and A. Hagues. “UnSNAP: a mini-app for exploring the performance of deterministic
discrete ordinates transport on unstructured meshes.” In Cluster Computing, IEEE International Conference on, pp. 566–574. Belfast (2018). 12

CPU parallelism

§ Each t-level in sweep schedule for angle contains list of
elements to solve.

– Nested loop over elements in level and energy groups,
threaded with OpenMP.

Ø Solving energy groups in element helps with memory contiguity and
sufficient parallelism (see WRAp paper for details).

§ Small linear system assembled and solved from
sources, cross-sections, Sn quadrature and
precomputed integrals of basis pairs.

– Gaussian Elimination for solution. Numerically stable enough,
and full factorization very expensive.

– SIMD vectorization of element nodes.
Ø Corresponds to vectorising rows of matrix and of the right-hand side

vector.
13

GPU parallelism

§ Early results from CUDA implementation, linear elements showing
promising performance.

– Full port of UnSNAP so data is resident in GPU memory.
§ Combine schedule for angles in angle set as need more concurrency for

sufficient work on GPU.
§ Launch a kernel for each t-level in combined graph.
§ One thread block for each element, group, angle.
§ For linear elements, 64 threads/block, one thread per matrix entry.
§ This approach hits device limits for higher orders: thread over matrix rows.
§ Use atomic updates for scalar flux reduction from parallel angle.
§ Linear system assembled and solved in shared memory (manual caching).

14

Hardware

Architecture Cores Clock GHz Peak FP64 TFLOP/s Main memory
bandwidth GB/s

Intel Broadwell 18×2 2.1 1.21 154

Intel Skylake 28×2 2.1 3.76 (3.1X) 256 (1.7X)

Marvell ThunderX2 32×2 2.5 1.28 (1.1X) 288 (1.9X)

IBM Power 9 20×2 3.2 1.02 (0.8X) 340. (2.2X)

NVIDIA P100 60 SMs 1.13 4.04 (3.3X) 732 (4.8X)

NVIDIA V100 84 SMs 1.37 7.01 (5.8X) 900 (5.8X)

§ Broadwell as performance baseline.
§ Dual-socket CPUs, and one GPU accelerator.
§ Theoretical relative performance of these simple metrics shown in brackets.

15

Performance results

Broadwell Skylake ThunderX2 Power 9 P100 V100

0

2

4

6

1

1
.4
7

1
.3
6

0
.3
2

2
.9
3

6

1

2
.5
3

1
.7
3

0
.4
1

0
.6
4

2
.5
9

1

4
.0
7

2
.2
2

0
.4
7

0
.5
2

1
.3

S
p
e
e
d
u
p
o
v
e
r
B
r
o
a
d
w
e
ll

Order 1

Order 2

Order 3

§ Performance normalised to Broadwell. All CPUs dual-socket, and compare to one GPU.
§ For linear elements, ThunderX2 and Skylake performance similar, around 1.4X over Broadwell.
§ 6X performance improvement over Broadwell for one V100 GPU for linear elements.
§ Skylake fastest for higher orders.
§ Improvements here don’t relate to simple FLOP/s or main memory bandwidth of processors.

512 cells, 80 angles, 32 energy groups = 1.3M TDoF
10.5M-83.9M unknowns (depending on order)

16

Relative performance improvement

Broadwell Skylake ThunderX2 Power 9

0

0.5

1

1.5
0
.7

1

0
.9
4

0
.4
1

0
.8
8 1
.0
1

0
.9
8

0
.9
8

1
.0
1

1 1

1
.1
3

S
p
e
e
d
u
p

Order 1

Order 2

Order 3

§ No CPU shows significant
performance improvement from one to
two sockets for any order.

§ Low arithmetic intensity as more bytes
read for assembly and Gaussian
elimination than number of FLOPs.

§ UnSNAP bound by on-core resources,
i.e. not main memory bandwidth
bound.

§ Broadwell L1 cache hit rate over 95%.
– L2 cache hit goes from 53% single

socket to 7% two socket.
– Note: Angular flux is larger than L3

cache for all orders.

§ Comparing improvement from
one fully populated socket to
two half populated sockets.

17

Performance analysis

§ Relative L1 cache bandwidth between processors not the whole picture.
§ Each linear system small enough to fit in cache, so access to cache

dictates the performance on CPU.
§ Caches designed to be transparent to applications, so analysis is difficult.

§ GPU also not limited by device memory bandwidth.
– Nvprof shows very few device memory accesses.
– Most memory requests satisfied by GPU caches rather than HBM.

Ø L2 cache had 96% hit rate.

§ Parallel angle schedule on GPU required for sufficient parallelism, 2.5X
faster than serial angle schedule for linear elements.

– On a CPU, parallel angle schedule much slower.
18

Summary

§ Solving the transport equation is challenging!
§ Our algorithms are going to need to expose sufficient concurrency

to work efficiently on parallel many-core architectures.
§ On CPUs, both structured and unstructured transport is limited by

the performance of the cache.
§ On GPUs, we see different performance bounds based on the

discretisation method:
– Structured grid/finite difference: main memory bandwidth.
– Unstructured grid/DG finite element: device cache performance.

https://uob-hpc.github.io tom.deakin@bristol.ac.uk
19

